INDIAN SCHOOL SOHAR
FORMATIVE ASSESSMENT I1
Subject : Mathematics
\section*{SET 1}
Marks: 25
Time: 45 minutes

General Instructions:

* All questions are compulsory
- The question paper consists of 11 questions divided into 4 sections A, B, C and D. Section-A comprises of 3 questions of 1 mark each, Section-B comprises of 4 questions of 2 marks each, Section-C comprises of 2 questions of 3 marks each and Section-D comprises of 2 questions of 4 marks each.
- Question numbers 1 to 3 in section-A are multiple choice questions where you are to select one correct option out of the given four.

Section - A

1 Point $(0,7)$ lies :
a) in I quadrant
b) on x-axis
c) on y-axis
d) in IV quadrant

2 'Lines are parallel if they do not intersect' is stated in the form of :
a) an axiom
b) a definition
c) a postulate
d) a proof

3 If the measure of an angle is twice the measure of its supplementary angle, then the measure of the angle is :
a) 60°
b) 90°
c) 120°
d) 130°

Section-B

4 In the figure, if $A C=B D$, then prove that $A B=C D$

5 Prove that the sum of the angles of a triangle is 180°
6 A point lies on x-axis at a distance of 7 units from y - axis. What are its coordinates? What will be the coordinates of a point if it lies on y - axis at a distance of (-7) units from x - axis?

7 In the figure, lines PQ and AB intersect at O . If $\angle \mathrm{DOQ}=90^{\circ}$ and $\mathrm{a}: \mathrm{b}=2: 3$ find c.

B

Section C

8 In the figure, AOB is a triangle with co-ordinates of A and O as $(4,0)$ and $(0,0)$ respectively. $\mathrm{AB}=5$. Find the co-ordinates of $\mathrm{B} \uparrow \mathrm{Y}$

9 Mark the points $(0,2),(3,0),(-3,0)$ and $0,-2)$ on a graph. Join these points. Name the figure obtained and find the area of the figure so obtained.

Section - D

10 If two parallel lines are intersected by a transversal, then prove that the bisectors of the interior angles form a rectangle.

11 Bisectors of angles B and C of a triangle ABC intersect each other at the point O . Prove that $\angle \mathrm{BOC}=90^{\circ}+\frac{1}{2} \angle \mathrm{~A}$.

