INDIAN SCHOOL SOHAR FIRST TERM EXAM - 2013 CHEMISTRY

STD: XI Date: 23-09-13 Marks: 70 Time: 3Hrs

Instructions:

- 1. All questions are compulsory.
- 2. Question nos. 1-8 are very short answer questions and carry one mark each.
- 3. Question nos. 9-18 are short answer questions and carry two marks each.
- 4. Question nos. 19-27 are also short answer questions and carry three marks each.
- 5. Question nos. 28-30 are long answer questions and carry five marks each.
- 6. Use log tables if necessary. Calculators are not allowed.
- 1. Draw the plot of PV vs P for ideal gas and real gas.
- 2. What is the shape of the molecule whose central atom has 3 bond pair and 2 lone pair of electrons?
- 3. Why is formula mass used for ionic compounds instead of molecular mass?
- 4. Based on Fajan's rule, arrange the following cations in the decreasing order of their polarizing power : Na⁺, Mg²⁺, Al³⁺
- 5. Why is the effect of Heisenberg's uncertainty principle significant only for the motion of microscopic objects?
- 6. Why do liquids boil at lower temperature at higher altitudes?
- 7. Aluminium (Z=13) loses electron successively to form Al⁺, Al²⁺ and Al³⁺ ions. Which step will have highest ionization enthalpy and why?
- 8. Arrange the following carbocations in the increasing order of their stability.

 $(CH_3)_3C$, $(CH_3)_2 CH$, CH_3CH_2 , CH_3

- 9. Explain the shape and bond angle in NH₃ using VSEPR theory.
- 10. Explain the following with an example:a) Inductive effectb) Hyperconjugation
- 11. a) Write the bondline formula of 4-methyl-hex-4-en-2-ol.
 b) Which of the two : O₂NCH₂CH₂O⁻ or CH₃CH₂O⁻ is more stable and why?

Explain the formation of molecular orbitals taking H₂ as an example.

- 13. Calculate the amount of Na₂CO₃ present in 250ml of 0.2M solution. What is the amount of HCl required to react with this solution? Also calculate the volume of CO₂ evolved. (At mass of H = 1, C =12, O =16, Na = 23, Cl = 35.5)
- 14. Calculate the energy associated with 1st orbit of He⁺. What is the radius of this orbit in nm ?
- 15. Which of the following species will have the largest and the smallest size? Account for your answer. Mg, Mg²⁺, Al, Al³⁺ (At no: Mg=12, Al=13)
- 16. Pressure of 1g of an ideal gas A at 27^oc is 2bar. When 2g of another ideal gas B is introduced in the same flask at the same temperature, the pressure becomes 3bar. Find a relationship between their molecular mass.
- 17. a) Using the ideal gas equation, show that at a given temperature, density of a gas is proportional to its pressure.
 - b) At 0°c, the density of a certain oxide of a gas at 2bar is same as that of nitrogen at 5 bar. What is the molecular mass of the oxide?
- 18. The wavelength of the first spectral line of Balmer series is 6500A°. What is the wavelength of the second spectral line of Balmer series?
- 19. Write the IUPAC name for the following compounds: a) CH₃- CH₂-CH-CH₂-COOH b) CH₃-CH-CH₂-CH-CH₃ c) CH₃-CH₂-CH₂-C-COCH₃ l OH NH₂ OH CH₃ CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃ CH₃ CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃ CH₃ CH₃
- 20. a) What is photoelectric effect?
 - b) The threshold frequency for the ejection of electron from potassium metal is $5.3 \times 10^{14} \text{s}^{-1}$. Will the photon of radiation having energy $3.3 \times 10^{-19} \text{J}$ cause ejection of electron ? Justify. (h=6.6 x 10^{-34} JS)
- 21. Select from each group, the species which has
 a) smallest radius : O, O⁻, O²⁻
 b) largest ionization enthalpy : Mg, P, Ar
 c) largest electron gain enthalpy : F, Cl, Br
- 22. Account for the following:
 - a) Bond angle in H_2O is 104.5° though O undergoes sp³ hybridisation.
 - b) Boiling point of H₂O is abnormally high
 - c) Dipole moment of BF₃ is zero but NH₃ is 1.46D.
- 23. a) What is sp³ hybridisation?

b) Explain the shape and bond angle in methane using hybridization.

(OR)

Define dipole moment. Write any 2 applications of dipole moment giving examples.

- 24. Two flasks A and B have equal volume. Flask A contains H_2 at 300K while flask B contains equal mass of CH_4 at 600K.
 - a) Which flask contains more number of molecules and how many times more?
 - b) In which flask is the pressure greater and how many times greater?

- 25. a) State Dalton's law of partial pressure.
 - b) What is the pressure exerted by a mixture containing 3.2g of methane and 4.4g of CO₂ in 9l flask at 27°c? (Atomic mass of H=1, C=12, O=16, R=8.314JK⁻¹mol⁻¹)
- 26. a) Define mole.
 - b) Calculate the total number of moles present in a mixture containing 5.6Lt of CO₂ and 2.24Lt of SO₂.
- 27. Explain why?
 - a) Nitric acid is added to sodium extract before adding silver nitrate in the detection of halogens?
 - b) Organic liquid vaporizes at a temperature below its boiling point in steam distillation.
 - c) Alkyl groups act as electron donors when bonded to a Π system.
- 28. a) How is the presence of nitrogen detected in organic compounds? Explain.
 - b) Write the principle involved in steam distillation and give one example for it.
 - c) What kind of isomerism is shown by the following pairs of compounds?
 - i) n-propyl chloride and isopropyl chloride ii) Propanal and acetone
 - iii) methoxy propane and ethoxy ethane

(OR)

- a) Differentiate between electrophile and nucleophile giving examples.
- b)Write the resonance structures of Aniline.
- c) Write the structure of i) 2-chloro-3-hydroxypentanal ii) 5-oxohexanoic acid
- 29. Account for the following:
 - i) C-O bond is polar but CO₂ is non polar.
 - ii) Acetic acid exists as a dimer
 - iii) Dipole moment of NH₃ is more than NF₃
 - iv) O_2^{2-} is diamagnetic while O_2^{-} is paramagnetic.
 - v) Bonding molecular orbitals are more stable than antibonding molecular orbital.

(OR)

a) Draw the structure for the following:

i) SF₄ ii) NH₄⁺ c) H₃O⁺

b) Write three important conditions required for the linear combination of atomic orbitals to form molecular orbitals.

30. a) What is an ideal gas?

- b) Why do gases deviate from ideal behaviour at low temperature and high pressure?
- c) Calculate the number of moles of a gas occupying $5dm^3$ at 3.32 bar and 500K. (R = 0.083 bar dm³K⁻¹mol⁻¹)

(OR)

- a) Write the Van der Waal's equation for n moles of a gas.
- b) What is compressibility factor? Draw a plot of Z vs pressure for H_2 , N_2 , CH_4 and CO_2 .
- c) What is meant by i) viscosity ii) surface tension? Explain the effect of temperature on them.

---000----