INDIAN SCHOOL SOHAR
 UNIT TEST
 SUB: MATHEMATICS

STD: XI
MARKS: 50
DATE: 25.05.14
TIME: 2hrs
General Instructions:

1. All questions are compulsory.
2. The question paper consists of 15 questions divided into three sections A, B and C. Section A comprises of 6 questions of one mark each, section B comprises of 5 questions of four marks each and section C comprises of 4 questions of six marks each.
3. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
4. There is no overall choice. However, an internal choice has been provided in 2 questions of four marks each and 1 question of six marks. You have to attempt only one of the alternatives in all such questions.
5. Use of calculators is not permitted.

SECTION - A

1. Large hand of a clock is 42 cm long. How much distance does its extremity move in 20 minutes?
2. Evaluate: $\operatorname{cosec}\left(\frac{7 \pi}{6}\right)-\sin \left(\frac{2 \pi}{3}\right)$
3. If $A=\{3,4\}, B=\{1,5,6\}$ and $C=\{3,6,9,10\} D=\{4,6\}$; find
i) $B \times(A \cap D)$
ii) B - C
4. Write the following set in roster form: $B=\left\{b_{n}: n \in N, b_{n+1}=5 b_{n}\right.$ and $\left.b_{1}=1\right\}$
5. Write the domain and range of $\mathrm{f}(\mathrm{x})=[x]$.
6. If the ordered pairs $(x,-1)$ and $(3, y)$ belong to the set $\{(a, b): b=2 a-3\}$, find the values of x and y.

SECTION- B

7. Find the domain and range of the real valued function $f(x)$ given by; $f(x)=\frac{1}{1-x^{2}}$
8. a)Let R be the subset of $\mathrm{Z} \times \mathrm{Z}$ defined by $\mathrm{R}=\{(x+y, x y): x, y \in Z\}$. Is R a function from Z to Z? Justify your answer.
b) If $A=\{2,\{1,3\}\} B=\{4,5\}$ then find $P(A)$ and $B \times B \times B$.
9. Let A, B and C be the sets such that $\mathrm{A} \cup B=A \cup C$ and $A \cap B=A \cap C$. Show that $\mathrm{B}=\mathrm{C}$
10. Solve the equation ; $\sqrt{2} \sec \theta+\tan \theta=1$

OR

In any triangle ABC , prove that: $\sin \frac{B-C}{2}=\frac{b-c}{a} \cos \frac{A}{2}$
11. Using principle of mathematical induction prove that :
$4^{n}+15 n-1$ is divisible by 9 for all $n \in N$.

OR

$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right) \ldots\left(1+\frac{1}{n}\right)=(n+1)$ for all $n \in N$.

SECTION-C

12. Prove by the principle of mathematical induction that for all $n \in N$:

$$
\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}
$$

13. In a town of 10,000 families it was found that 40% families buy newspaper $\mathrm{A}, 20 \%$ families buy newspaper B and 10\% families buy newspaper C. 5% families buy A and B, 3% families buy B and C and 4\% families buy A and C. If 2% families buy all the three newspapers, find the number of families which buy i) A only ii) B only iii) none of A, B and C. Mention any 2 importance of reading newspaper every day.
14. Prove that: $\cos ^{2} A+\cos ^{2}\left(A+\frac{2 \pi}{3}\right)+\cos ^{2}\left(A-\frac{2 \pi}{3}\right)=\frac{3}{2}$

OR

$$
\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}=\frac{1}{16}
$$

15. Find $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$, if $\tan x=\frac{-4}{3}$, x lies in the second quadrant.
