INDIAN SCHOOL SOHAR
 FORMATIVE ASSESSMENT I (2015 - 16)
 MATHEMATICS

Class: IX

Date: 14.05.2015
Marks: 20
General Instructions:
a. The question paper has 9 questions in all. All questions are compulsory.
b. Marks are indicated against each question.

1. If $x=0.064$, find the value of $\left(\frac{1}{x}\right)^{1 / 3}$
2. What is the remainder when $2 x^{3}-2 x^{2}+x-1$ is divided by $(x-1)$?
3. Simplify: $(\sqrt{3}+2)(\sqrt{3}-2)$
4. If $x=\frac{-1}{2}$ is a zero of the polynomial, $p(x)=a x^{3}-x^{2}+x+4$, find the value of ' a '
5. Simplify: $\frac{\sqrt[3]{27}-\sqrt[3]{125}}{1-\sqrt{2}}$
6. Represent $\sqrt{ } 4.6$ on the number line.
7. If remainder is same when polynomial $p(x)=x^{3}+8 x^{2}+17 x+a x$ is divided by $(x+2)$ and $(x-1)$, find the value of ' a '.

INDIAN SCHOOL SOHAR FORMATIVE ASSESSMENT I (2015-16) MATHEMATICS

Class: IX

Date: 14.05.2015
General Instructions:
a. The question paper has 9 questions in all. All questions are compulsory.
b. Marks are indicated against each question.

1 Simplify: $(3+\sqrt{5})(3-\sqrt{5})$
2 What is the remainder when $4 x^{3}-3 x^{2}+2 x+4$ is divided by $(x+2)$
3 If $x=0.125$, find the value of $\left(\frac{1}{x}\right)^{1 / 3}$
3 If $\mathrm{x}=\frac{-1}{3}$ is a zero of the polynomial $\mathrm{p}(\mathrm{x})=27 \mathrm{x}^{3}-\mathrm{mx}^{2}-\mathrm{x}+3$, then find the value of m
5 Simplify: $\frac{\sqrt[3]{8}-\sqrt[3]{125}}{1-\sqrt{3}}$
6 If $\mathrm{a}=1-\sqrt{2}$, find $\left(a-\frac{1}{a}\right)^{3}$
7 Represent $\sqrt{ } 4.2$ on the number line.
8. If $\mathrm{a}=2+\sqrt{3}$, find $\left(a+\frac{1}{a}\right)^{3}$
9. Simplify: $\frac{1}{2+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{9}}$

Page 2

8 The polynomial $a x^{3}+3 x^{2}-3$ and $2 x^{3}-5 x+a$ when divided by $x-4$ leave the same remainder in each case. Find the value of a.

9 Find the value of $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots \ldots \ldots \ldots \ldots . \frac{1}{\sqrt{8}+\sqrt{9}}$

