INDIAN SCHOOL SOHAR
 FORMATIVE ASSESSMENT- 1
 MATHEMATICS

Date: 10-05-2015
Time: 40 mnts
Class: X
Marks: 20

General Instructions:

- All questions are compulsory.
- Section A comprises 3 questions of 1 mark each.
- Section B comprises 2 questions of 2 marks each.
- Section C comprises 3 questions of 3 marks each.
- Section D comprises 1 question of 4 marks.

SECTION A

1. The decimal expansion of $\frac{47}{2^{3} .5}$ will terminate after how many places of decimals?
2. Given that $\operatorname{HCF}(26,91)=13$, then find LCM of $(26,91)$.
3. If α and β are zeros of $\mathrm{x}^{2}+5 \mathrm{x}+8$, then find the value of $\alpha+\beta$.

INDIAN SCHOOL SOHAR FORMATIVE ASSESSMENT- 1 MATHEMATICS

Date: 10-05-2015
Time: 40 mnts
Class: X
Marks: 20

General Instructions:

- All questions are compulsory.
- Section A comprises 3 questions of 1 mark each.
- Section B comprises 2 questions of 2 marks each.
- Section C comprises 3 questions of 3 marks each.
- Section D comprises 1 question of 4 marks.

SECTION A

1. The decimal expansion of $\frac{97}{2^{4} .5}$ will terminate after how many places of decimals?
2. Given that $\operatorname{HCF}(306,657)=9$, then find LCM of $(306,657)$.
3. If α and β are zeros of $3 \mathrm{x}^{2}-5 \mathrm{x}+8$, then find the value of $\alpha+\beta$.

SECTION B.

4. Show that 9^{n} can't end with 2 for any integer n.
5. Find the HCF of 135 and 225 by Euclid's method.

SECTION C

6. Prove that $2+3 \sqrt{2}$ is irrational.
7. If the zeros of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b$, a and $a+b$, find a and b.
8. Form a quadratic polynomial whose one of the zero is " -15 " and sum of the zeros is 42 .

SECTION D

9. Obtain all other zeros of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeros are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$
XXXXXXXX ---- THE END ---- XXXXXXXX

SECTION B.

4. Find the HCF of 867 and 255 by Euclid's method.
5. Show that 9^{n} can't end with 2 for any integer n.

SECTION C

6. Prove that $5+3 \sqrt{3}$ is irrational.
7. Form a quadratic polynomial whose one of the zero is " -15 " and sum of the zeros is 42 .
8. If the zeros of the polynomial $x^{3}-3 x^{2}+x+1$ are $p-q, p$ and $p+q$, find p and q.

SECTION D

9. Obtain all other zeros of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeros are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$
