Class: IX	Marks: 20
Date: 04.02.2016	Time: $\mathbf{4 0}$ minutes

General Instructions:

- All questions are compulsory.
- Section A comprises $\mathbf{3}$ questions of $\mathbf{1}$ mark each, Section B comprises $\mathbf{2}$ questions of $\mathbf{2}$ marks each, Section C comprises $\mathbf{3}$ questions of $\mathbf{3}$ marks each and Section D comprises $\mathbf{1}$ question of $\mathbf{4}$ marks.

SECTION A

1. Find the number of small cubes with edge 20 cm that can be accommodated in a cubical box of 2 m edge.
2. Calculate the volume of a sphere with radius 2 r .
3. Two parallelograms are on the same base and between the same parallels. Find the ratio of their areas.

SECTION B
4. Diagonals AC and BD of a trapezium ABCD with $\mathrm{AB} \| \mathrm{DC}$ intersect each other at O . Prove that $\operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{BOC})$
5. The height of a cone is 15 cm . If its volume is $125 \pi \mathrm{~cm}^{3}$, find the diameter of the base.

> P.T.O

SET 2

Class: IX
Date: 04.02.2016

INDIAN SCHOOL SOHAR FORMATIVE ASSESSMENT IV (2015-16) MATHEMATICS

No of printed pages: 2

Marks: 20
Time: 40 minutes

General Instructions:

- All questions are compulsory.
- Section A comprises $\mathbf{3}$ questions of $\mathbf{1}$ mark each, Section B comprises $\mathbf{2}$ questions of $\mathbf{2}$ marks each, Section C comprises $\mathbf{3}$ questions of $\mathbf{3}$ marks each and Section \mathbf{D} comprises $\mathbf{1}$ question of $\mathbf{4}$ marks.

SECTION A

1. Calculate the volume of hemisphere with radius 2 r .
2. Find the number of small cubes with edge 10 cm that can be accommodated in a cubical box of 1 m edge.
3. Two triangles are on the same base and between the same parallels. Find the ratio of their areas.

SECTION B

4. If slant height of a cone is 21 m and diameter of its base is 14 m , then find its total surface area.
5. Diagonals $P R$ and $Q S$ of a trapezium $P Q R S$ with $P Q \| R S$ intersect each other at O. Prove that $\operatorname{ar}(\triangle P O S)=\operatorname{ar}(\triangle Q \mathrm{OR})$.

SECTION C

6. D is the midpoint of side BC of $\triangle \mathrm{ABC}$ and E is the midpoint of BD . If O is the midpoint of AE , then prove that $\operatorname{ar}(\triangle \mathrm{BOE})=\frac{1}{8} \operatorname{ar}(\Delta \mathrm{ABC})$.

7. If the diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.
8. The total surface area of a solid cylinder is $231 \mathrm{~cm}^{2}$ and its curved surface area is $\frac{2}{3}$ of the total surface area. Find the volume of the cylinder.

SECTION D

9. In a circle of radius $5 \mathrm{~cm}, \mathrm{AB}$ and AC are two chords such that $\mathrm{AB}=\mathrm{AC}=6 \mathrm{~cm}$. Find the length of the chord BC.

SECTION C

6. S is the midpoint of side QR of $\triangle \mathrm{PQR}$ and T is the midpoint of QS . If O is the midpoint of PT , then prove that $\operatorname{ar}(\Delta \mathrm{QOT})=\frac{1}{8} \operatorname{ar}(\Delta \mathrm{PQR})$.

7. The total surface area of a solid cylinder is $231 \mathrm{~cm}^{2}$ and its curved surface area is $\frac{2}{3}$ of the total surface area. Find the volume of the cylinder.
8. If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.

SECTION D

9. In a circle of radius $5 \mathrm{~cm}, \mathrm{MN}$ and MP are two chords such that $\mathrm{MN}=\mathrm{MP}=6 \mathrm{~cm}$. Find the length of the chord PN.
