Class : XI
Date : 16.05.2017

Time : 2.00 Hrs.
Max. Marks : 50

General Instructions:

(i) All questions are compulsory.
(ii) Question numbers 1 and 2 are very short answer questions carrying 1 mark each.
(iii) Question numbers 3 to 7 are short answer questions carrying 2 marks each.
(iv) Question numbers 8 to 15 are also short answer questions carrying 3 marks each.
(v) Question numbers 16 is a value based question carrying 4 marks.
(vi) Question numbers 17 and 18 are long answer questions carrying 5 marks each.
(vii) Use log tables, if necessary. Use of calculator is not allowed.

1. If 6.02×10^{23} molecules of N_{2} react completely with H_{2} according to the equation:
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$, then calculate the number of molecules of NH_{3} formed.
2. Atomic number of sulphur is 16 and that of oxygen is 8 . Calculate the total number of protons in a sulphite ion.
3. Calculate the concentration of nitric acid in moles per litre in a sample which has a density, $1.41 \mathrm{gmL}^{-1}$ and the mass per cent of nitric acid in it being 69%.

OR
1 M solution of NaNO_{3} has density $1.25 \mathrm{gcm}^{-3}$. Calculate its molality. (Mol. Wt. of $\mathrm{NaNO}_{3}=$ $85 \mathrm{gmol}^{-1}$)
4. Calculate the volume of O_{2} at STP liberated by heating 12.25 g of KClO_{3}. (At.wt. of $\mathrm{K}=39, \mathrm{Cl}$ $=35.5, \mathrm{O}=16$)
5. An organometallic compound on analysis was found to contain $\mathrm{C}=64.4 \%, \mathrm{H}=5.55 \%$ and $\mathrm{Fe}=$ 29.9%. Determine its empirical formula. (Atomic mass of $\mathrm{Fe}=56$).
6. One of the spectral lines of caesium has a wavelength of 456 nm . Calculate the frequency of this line $\left(\mathrm{c}=3.0 \times 10^{8} \mathrm{~ms}^{-1}\right)$.
7. Calculate the number of protons, neutrons and electrons in ${ }_{35}^{80} \mathrm{Br}$
8. Calculate the molecular mass of the following: (i) $\mathrm{H}_{2} \mathrm{O}$ (ii) CO_{2} (iii) CH_{4}
9. 50 kg of $\mathrm{N}_{2(\mathrm{~g})}$ and 10.0 kg of $\mathrm{H}_{2(\mathrm{~g})}$ are mixed to produce $\mathrm{NH}_{3(\mathrm{~g})}$. Calculate the $\mathrm{NH}_{3(\mathrm{~g})}$ formed. Identify the limiting agent in the production of NH_{3} in this situation.

OR

(i) What is limiting agent?
(ii) Chlorine is prepared in laboratory by treating manganese dioxide $\left(\mathrm{MnO}_{2}\right)$ with aqueous hydrochloric acid according to the reaction:
$4 \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{MnO}_{2(\mathrm{~s})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{MnCl}_{2(\mathrm{aq})}+\mathrm{Cl}_{2(\mathrm{~g})}$
How many grams of HCl react with 5.0 g of manganese dioxide? (Atomic mass of $\mathrm{Mn}=$ $55 \mathrm{u}, \mathrm{O}=16 \mathrm{u}, \mathrm{H}=1 \mathrm{u}, \mathrm{Cl}=35.5 \mathrm{u}$)
10. How many moles of methane are required to produce $22{\mathrm{~g} \mathrm{of} \mathrm{CO}_{2(\mathrm{~g})} \text { after combustion? }}^{\text {. }}$
11. A solution is prepared by adding 2 g of a substance A to 18 g of water. Calculate the mass per cent of the solute.
12. If 4 g of NaOH dissolved in 36 g of $\mathrm{H}_{2} \mathrm{O}$, calculate the mole fraction of each component in the solution. Also, determine the molarity of solution (specific gravity of solution is $1 \mathrm{gmL}^{-1}$).
13. (i) State Avogadro's law.
(ii) What mass of CaCl_{2} will be formed by reaction of excess of CaCO_{3} with 25 mL of 0.75 M HCl according to the equation:
$\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
(At. Mass of $\mathrm{Ca}=40, \mathrm{C}=12, \mathrm{O}=16, \mathrm{Cl}=35.5$ and $\mathrm{H}=1$)
14. (i) What is photoelectric effect?
(ii) Define work function.
15. Arrange the following type of radiations in increasing order of frequency: (i) radiation from microwave oven (ii) amber light from traffic signal (iii) radiation from FM (iv) cosmic rays from outer space and (v) X-rays.
16. Wilhelm Roentgen showed that when electrons strike a material in the cathode ray tube, produces rays which can cause fluorescence in the fluorescent material placed outside the cathode ray tubes.
These rays were called X-rays which were not deflected by electric and magnetic field. X-rays are used as a diagnostic tool in the treatments of diseases and bone fractures. John was arrested by custom officials as he was smuggling drugs and caught by X-ray machines.
(i) The approximate wavelength of X-rays is \qquad .
(ii) Why are X-rays used at airports, to screen luggage?
(iii) What values are not possessed by John? What measures should be taken to prevent this?
17. A box contains some identical red coloured balls, labelled as A, each weighing 2 g . Another box contains identical blue coloured balls labelled as B , each weighing 5 g . Consider the combinations $A B, A B_{2}, A_{2} B$ and $A_{2} B_{3}$ and show that the law of multiple proportions is applicable.

OR

1.80 g of a certain metal burnt in oxygen gave 3.0 g of its oxide. 1.50 g of the same metal is heated in steam gave 2.50 g of its oxide. Which law is shown by this data? By calculations illustrate it.
18. Threshold frequency, v_{0} is the minimum frequency which a photon must possess to eject an electron from a metal. It is a different for different metals. When a photon of frequency 1.0 x $10^{15} \mathrm{~s}^{-1}$ was allowed to hit a metal surface, an electron having $1.988 \times 10^{-19} \mathrm{~J}$ of kinetic energy was emitted. Calculate the threshold frequency of this metal. Show that an electron will not be emitted if a photon with a wavelength equal to 600 nm hits the metal surface. $\left(\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}\right)$ OR
(i) In Millikan's experiment, static electric charge on the oil drops has been obtained by shining X-rays. If the static electric charge on the oil drop is $-1.282 \times 10^{-18} \mathrm{C}$, calculate the number of electrons present on it.(Charge of an electron $=1.6 \times 10^{-19} \mathrm{C}$)
(ii) In Rutherford's experiment, generally the thin foil of heavy atoms, like gold, platinum etc. have been used to be bombarded by α particles. If the thin foil of light atoms such as aluminium is used, what difference would be observed from the above results?

