INDIAN SCHOOL SOHAR
 UNIT TEST 2017-2018
 MATHEMATICS

Class: XII
Time: 2 Hrs
Date: 21/05/17

Marks: 50

General Instructions

* All questions are compulsory.
* Please check that this Question Paper contains 16 Questions.
* Questions 1 to 4 in Section-A are Very Short Answer Type Questions carrying one mark each.
* Questions 5 to 8 in Section-B are Short AnswerI Type Questions carrying 2 marks each.
* Questions 9 to 13 in Section-C are Long Answer I Type Questions carrying 4 marks each
* Questions 14 to 16 in Section-C are Long Answer II Type Questions carrying 6 marks each
* Please write down the serial number of the Question before attempting it.
* 10 minute time has been allotted to read this question paper. The students will read the question paper only and will not write any answer on the answer-book during this period.

SECTION A

1. Let R be the equivalence relation in the set Z of integers given by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): 2$ divides $\mathrm{a}-\mathrm{b}\}$. Write the equivalence class [0]
2. Find the value of $\sin ^{-1}\left(\sin \frac{33 \pi}{7}\right)+\cos ^{-1}\left(\cos \frac{46 \pi}{7}\right)$
3. If a line makes angles a, b, c with the co ordinate axes, what is the value of $\cos 2 \mathrm{a}+\cos 2 \mathrm{~b}+\cos 2 \mathrm{c} ?$
4. If \vec{a} is a unit vector and $(2 \vec{x}-3 \vec{a}) \cdot(2 \vec{x}+3 \vec{a})=91$, find the value of x .

SECTION B

5. If $\tan ^{-1} x+\tan ^{-1} \frac{1}{2}=\frac{\pi}{4}$, where x is acute, find the value of x.
6. If \vec{a} and \vec{b} are the unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each other, then find the angle between \vec{a} and \vec{b}.
7. A man rides his motorcycle at the speed of $50 \mathrm{~km} /$ hour. He has to spend Rs 2 per km on petrol. If he rides it at a faster speed of $80 \mathrm{~km} /$ hour, the petrol cost increases to Rs 3 per km . He has atmost Rs 120 to spend on petrol and one hour's time. He wishes to find the maximum distance that he can travel. Express this problem as a linear programming problem.
8. Find the vector equation of the line passing through the point $(2,-1,1)$ and parallel to the line joining the points $(-1,4,1)$ and $(1,2,2)$.

SECTION C

9. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$ prove that $x^{4}+y^{4}+z^{4}+4 x^{2} y^{2} z^{2}=2\left[x^{2} y^{2}+y^{2} x^{2}+z^{2} x^{2}\right]$
10. Minimise $Z=3 x+5 y$ subject to the constraints: $x+2 y \geq 10, x+y \geq 6,3 x+y \geq 8, x, y \geq 0$
11. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$.
[OR]
Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.
12. Let a function $\mathrm{f} ; R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{x})=1+\alpha \mathrm{x}, \alpha \neq 0$, for all $\mathrm{x} \in R$. Show that f is invertible and find its inverse function.Also find the value(s) of α if inverse of f is f itself . [OR]
Define a binary operation $*$ on the set $\{0,1,2,3,4,5,6\}$ as $\mathrm{a} * \mathrm{~b}= \begin{cases}a+b \text { if } a+b<7 \\ a+b-7 & \text { if } a+b \geq 7\end{cases}$
Show that zero is the identity for this operation and each element a of the set is Invertible with 7 - a being the inverse of a.
13. Find the value of λ if the points $\mathrm{A}(-1,4,-3), \mathrm{B}=(3, \lambda,-5), \mathrm{C}(-3,8,-5)$ and $\mathrm{D}(-3,2,1)$ are co planar

SECTION D

14. Find the equation of the line passing through the point $(4,6,2)$ and the point of intersection of the line $\frac{x-1}{3}=\frac{y}{2}=\frac{z+1}{7}$ and the plane $x+y-z=8$
[OR]
Show that the lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}: \frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$ are co planar .Find their common point and the equation of the plane in which they lie.
15. Let $A=N X N$ and let be a binary operation on A defined by $(a, b)^{*}(c, d)=(a d+b c$, bd), for all ($a, b),(c, d) \in N X N$. Show that
(i) ${ }^{* *}$ is commutative on A
(ii) ${ }^{*}{ }^{\prime \prime}$ is associative on A
(iii) A has no identity element.
16. Solve the following equation for ' x ' $\tan ^{-1} \frac{1}{2 x+1}+\tan ^{-1} \frac{1}{4 x+1}=\tan ^{-1} \frac{2}{x^{2}}$
[OR]
Solve the equation $\cos ^{-1}(\sqrt{6} x)+\cos ^{-1}\left(3 \sqrt{3} x^{2}\right)=\frac{\pi}{2}$

XIIi88888888888888888IIX

