No. of printed pages:3+1graph

INDIAN SCHOOL SOHAR PERIODIC TEST-II, 2017-18 MATHEMATICS

CLASS- IX DATE: 26.09.17 MAXIMUM MARKS: 80 TIME: 3 Hours

GENERAL INSTRUCTIONS:

- All questions are compulsory.
- The question paper consists of **30** questions divided into 4 sections A,B,C,D.Section A comprises of **6** questions of **1 mark** each, section B comprises of **6** questions of **2 marks** each, section C comprises **10** questions of **3 marks** each and section D comprises of **8** questions of **4 marks** each.
- There is no overall choice in the question paper.
- Use of calculators not permitted.

SECTION A

- 1. Find the value of $(256)^{0.16}x (256)^{0.09}$.
- 2. Find the coefficient of x^2 in $(3x^2-5)(4+4x^2)$.
- 3. Two angles measures (55^0+3a) and (115^0-2a) . If each is supplement of the other, then calculate the value of a.
- 4. An exterior angle of a triangle is 80⁰ and the interior opposite angles are in the ratio 1:3.Find measures of each interior opposite angles.
- 5. In a \triangle ABC, if \angle A=45⁰ and \angle C=60⁰, then find the shortest side of the triangle.
- 6. In which quadrant does the point lie whose ordinate is 5 and abscissa is -3.

SECTION B

- 7. Using Heron's formula, find the area of an equilateral triangle with side 'b' unit.
- 8. Show that x+3 is a factor of $69+11x-x^2+x^3$.
- 9. Lines PQ and RS intersect each other at point O. If ∠POR:∠ROQ=5:7, find all the remaining angles.
- 10. In an isosceles trapezium, the diagonals BD and AC are equal. Prove \angle DAB= \angle CBA.
- 11. Find the value of n if $(81)^{\frac{5}{n}} = 243$
- 12. If $\frac{\sqrt{2}-1}{\sqrt{2}+1} = a+b\sqrt{2}$ then find a and b.

PTO

SECTION C

- 13. If a+b+c=6, then find the value of $(2-a)^3+(2-b)^3+(2-c)^3-3(2-a)(2-b)(2-c)$
- 14. Express $3.42\overline{5}$ in the form of $\frac{p}{a}$.

15. If $f(x)=x^2-5x+1$, evaluate $f(2)-f(-1)+f(\frac{1}{3})$.

- 16. Using suitable identity, evaluate
 (i)103³ (ii)101x102 (iii)999²
- 17. Locate $\sqrt{10+2}$ on the number line.
- 18. In a \triangle ABC, X and Y are the points on AB and BC such that BX=BY and AB=BC. Show that AX=CY.State the Euclid's Axiom used.
- 19. In a right triangle ACB, right angled at C, M is the midpoint of hypotenuse AB. C is joined to M and produced to a point D such that DM=CM. Point D is joined to point B. Show that:
 - (i) $\Delta AMC \cong \Delta BMD$

(ii)
$$\angle DBC=90^{\circ}$$

- 21. The side QR of \triangle PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that \angle QTR= $\frac{1}{2} \angle$ QPR
- 22. In the given figure, AB = BC and $\angle ABO = \angle CBO$, then prove that $\angle DAB = \angle ECB$.

Section D

23. Prove that:

$$\frac{1}{(\sqrt{4}+\sqrt{5})} + \frac{1}{(\sqrt{5}+\sqrt{6})} + \frac{1}{(\sqrt{6}+\sqrt{7})} + \frac{1}{(\sqrt{7}+\sqrt{8})} + \frac{1}{(\sqrt{8}+\sqrt{9})} = 1$$

- 24. Factorize x^3-3x^2-9x-5
- 25. The polynomial ax^3+3x^2-3 and $2x^3-5x+a$ when divided by x-4 leave the same remainder in each case. Find the value of a.
- 26. The sides AB and AC of \triangle ABC are produced to points P and Q respectively. If bisectors BO and

CO of \angle CBP and \angle BCQ respectively meet at point O, then prove that \angle BOC=90°- $\frac{1}{2}$ \angle BAC.

- 27. Prove that two triangles are congruent if any two angles and the included side of one triangle are equal to any two angles and the included side of other triangle.
- 28. Three vertices of a rectangle are (3,2), (-4,2) and (-4,5). Plot these points and find the coordinates of the fourth vertex. Find the length of diagonal and area of the rectangle.
- 29. There is a slide in a park. One of its side walls has been painted in some color with a message "KEEP THE PARK GREEN AND CLEAN". The perimeter of the triangular wall is 50 m. One side of a triangle is 4m longer than the smaller side and the third side is 6 m less than twice the smaller side. Find the area of the triangular wall. What message is depicted in this problem?
- 30. AB and CD are the smallest and longest side of quadrilateral ABCD. Prove that $\angle A > \angle C$.