INDIAN SCHOOL SOHAR
 PERIODIC TEST III
 MATHEMATICS

Set 1

STD: IX
Marks: 20
09-01-18
Time: $\mathbf{4 0}$ minutes

General Instructions:

(i) All questions are compulsory
(ii) The question paper consists of $\boldsymbol{9}$ questions divided into four sections $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ and \boldsymbol{D}.
(iii) Section \boldsymbol{A} contains $\mathbf{3}$ questions of $\mathbf{1}$ mark each. Section \boldsymbol{B} contains $\mathbf{2}$ questions of $\mathbf{2}$ marks each. Section \boldsymbol{C} contains $\mathbf{3}$ questions of $\mathbf{3}$ marks each. Section \boldsymbol{D} contains $\boldsymbol{1}$ question of $\mathbf{4}$ marks.
(iv) There is no overall choice. However, an internal choice has been provided in four questions. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted

Section A

Question numbers 1 to 3 carry 1 mark each.

1. Evaluate $\sqrt{\left(3^{-2}\right)}$
2. If $x+2$ is a factor of $2 x^{3}-k$, find value of k
3. In the figure, $A O B$ is a straight line. Find the measure of $\angle \mathrm{COD}$

Section B

Question numbers 4 and 5 carry 2 marks each.
4. Prove that equal chords of a circle subtend equal angles at the centre.

OR

In the figure, O is the centre of the circle. Arc BCD subtends an angle of 140° at the centre. BC is produced to P and CD is joined. Find measure of $\angle \mathrm{DCP}$.

5. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Section C

Question numbers 6 to 8 carry 3 marks each.

6. Give the equations of two lines passing through $(-3,4)$. How many more such lines are possible ?
7. In the given figure, if two isosceles triangles have a common base, prove that line segment joining their vertices bisects the common base at right angles.

OR

In Fig. given below, AD is the median of $\triangle \mathrm{ABC}$. $\mathrm{BE} \perp \mathrm{AD}, \mathrm{CF} \perp \mathrm{AD}$. Prove that $\mathrm{BE}=\mathrm{CF}$

8. Parallelograms on the same base and between same parallels are equal in area. Prove this.

OR

Diagonals AC and BD of quadrilateral ABCD intersect each other at O in such a way that ar $(A O D)=\operatorname{ar}(B O C)$. Prove that $A B C D$ is a trapezium .

Section D
 Question number 9 carries 4 marks

9. Construct a right triangle whose perimeter is 10 cm and one acute angle is 60°

OR

Construct a $\triangle \mathrm{PQR}$ in which $\mathrm{QR}=7 \mathrm{~cm}, \angle \mathrm{Q}=45^{\circ}$ and $\mathrm{PQ}-\mathrm{PR}=3 \mathrm{~cm}$.

