

INDIAN SCHOOL SOHAR FINAL EXAMINATION 2017-2018 CHEMISTRY

Class	: XI
Date	: 25.02.2018

Time: 3.00 Hrs.Max. Marks: 70

General Instructions:

- (i) All questions are compulsory.
- (ii) Question numbers 1 and 5 are very short answer questions carrying 1 mark each.
- (iii) Question numbers 5 to 10 are short answer questions carrying 2 marks each.
- (iv) Question numbers 11 to 22 are also short answer questions carrying 3 marks each.
- (v) Question numbers 23 is a value based question carrying 4 marks.
- (vi) Question numbers 24 and 26 are long answer questions carrying 5 marks each.
- (vii) Use log tables, if necessary. Use of calculator is not allowed.

<u>Constants</u>: $R = 8.314 \text{ JK}^{-1}\text{mol}^{-1}$; $N_A = 6.02 \text{ x} 10^{23}$; $m_e = 9.1 \text{ x} 10^{-31} \text{kg}$; $C = 3 \text{ x} 10^8 \text{ms}^{-1}$

- 1. Write the IUPAC name and symbol for the element with atomic number 119.
- 2. Which of the following species has tetrahedral geometry? BH_4^- , NH_2^- , CO_3^{2-} , H_3O^+
- 3. The largest oxidation number exhibited by an element depends on its outer electronic configuration. With which of the following outer electronic configurations the element will exhibit largest oxidation number? $3d^{1}4s^{2}$; $3d^{3}4s^{2}$; $3d^{5}4s^{1}$; $3d^{5}4s^{2}$
- 4. Write water gas shift reaction.
- 5. Arrange the following in order of their increasing covalent character: MCl, MBr, MF, MI (where M is alkali metal)
- 6. 1M solution of NaNO₃ has density 1.25gcm^{-3} . Calculate its molality. (Molecular weight of NaNO₃ = 85 gmol⁻¹
- 7. Define an orbital. What does angular quantum number tell about an orbital?

OR

Define (i) frequency (ii) wavelength.

- 8. Write the conditions of temperature and pressure when gases deviate most from the ideal behaviour? Write real gas equation for n moles of a gas.
- 9. Define the following terms:
 - (i) Enthalpy of neutralisation
 - (ii) Hess's law of constant heat summation
- 10. Identify the compound A, X and Z in the following reactions:
 - (i) $A + 2HCl + 5H_2O \rightarrow 2NaCl + X$
 - (ii) $X \xrightarrow{\Delta/370 K} HBO_2 \xrightarrow{\Delta/>370 K} Z$
- A compound contains 4.07% hydrogen, 24.27% carbon and 71.65% chlorine. Its molar mass is 98.96 g. What are its empirical and molecular formulae? (At. Mass of H = 1 gmol⁻¹; C = 12 gmol⁻¹; Cl = 35.5 gmol⁻¹)
- 12. When electromagnetic radiation of wavelength 300 nm falls on the surface of sodium, electrons are emitted with a kinetic energy of 1.68×10^5 Jmol⁻¹. What is the minimum energy needed to

remove an electron from sodium? What is the maximum wavelength that will cause a photoelectron to be emitted? ($h = 6.626 \times 10^{-34}$ Js)

OR

A photon of wavelength 4 x 10^{-7} m strikes on metal surface, the work function of the metal being 2.13 eV. Calculate

- (i) Energy of the photon (eV)
- (ii) The kinetic energy of the emission
- (iii) The velocity of the photoelectron $(1 \text{ eV} = 1.602 \text{ x } 10^{-19} \text{J})$
- 13. Among the elements of second period Li to Ne, pick out element:
 - (a) With the highest first ionisation energy
 - (b) With the highest electronegativity
 - (c) With largest atomic radius
 - (d) that is most reactive non-metal
 - (e) that is most reactive metal
 - (f) with valency equal to 4
- 14. Discuss the shape of the following molecules using the VSEPR model:

BeCl₂, BCl₃, SiCl₄, AsF₅, H₂S, PH₃

- 15. (i) State Boyle's Law.
 - (ii) What will be the minimum pressure required to compress 500 dm³ of air at 1 bar to 200 dm³ at 30^{0} C.
- 16. Calculate the lattice enthalpy of MgBr₂ given that

Enthalpy of formation of MgBr	-524 kJmol ⁻¹	
Sublimation energy of Mg	=	148 kJmol ⁻¹
Ionization energy of Mg	=	2187 kJmol ⁻¹
Vaporisation energy of Br ₂ (1)	=	31 kJmol ⁻¹
Dissociation energy of $Br_{2(g)}$	=	193 kJmol ⁻¹
Electron gain enthalpy of $Br_{(g)}$	=	331 kJmol ⁻¹

- 17. Calculate the molar solubility of Ni(OH)₂ in 0.10 M NaOH. The ionic product of Ni(OH)₂ is 2.0×10^{-15} .
- 18. (i) Find the oxidation number of (a) Mn in MnO_4^- ; (b) O in H_2O_2

(ii) Balance the following equation by oxidation number method in basic medium: $MnO_4 + I^- \rightarrow MnO_2 + IO_3^-$

- 19. Write down the one method for manufacture of H_2O_2 and one example in which it act as oxidising and reducing agent.
- 20. (i) Draw the structure of $BeCl_2$ in vapour state.
 - (ii) Write two uses of Plaster of Paris.
 - (iii) What happens when chlorine reacts with slaked lime?
- 21. (i) Write the formula or Prussian blue colour formed in Lassigne's test for nitrogen detection.
- (ii) Write the formula for estimation of Nitrogen by Kjeldhal's method.
 - (iii)Name the method used to separate:
 - (a) Glycerol from spent lye in soap industry
 - (b) Aniline from aniline water mixture
- 22. Give three points of differences between inductive effect and resonance effect.
- 23. "Super Dry Cleaning" owner Mr. Grover was using tetrachloroethene earlier as a solvent for dry cleaning. The compound contaminates the ground water and is also suspected

carcinogenic. Mr. Jindal owner of "White Tiger Dry Cleaning" is using CO_2 these days. Hydrogen peroxide is being used for bleaching purpose.

- (i) What is the advantage of using liquid CO₂ with suitable detergent for dry-cleaning?
- (ii) What is the advantage of using H_2O_2 as bleaching agent?
- (iii) What is your responsibility as human being to protect environment?
- (iv) What values are possessed by Mr. Jindal?
- 24. (a) A sparingly soluble salt having general formula A^{P_+} , B^{q_+} and molar solubility S is in equilibrium with its saturated solution. Derive a relationship between the solubility and solubility product for such salt.
 - (b) Write a relation between ΔG and Q and define the meaning of each term and answer the following:
 - (i) Why a reaction proceeds forward when Q < K and no net reaction occurs when Q = K
 - (ii) Explain the effect of increase in pressure in terms of reaction quotient Q for the reaction: $CO_{(g)} + 3H_{2(g)} \leftrightarrows CH_{4(g)} + H_2O_{(g)}$
 - A reaction between ammonia and boron trifluoride is given below:

 $:NH_3 + BF_3 \rightarrow H_3N:BF_3$

Identify the acid and base in this reaction. Which theory explains it? What is the hybridisation of B and N in the reactants?

OR

- (a) How can you predict the following stages of a reaction by comparing the value of K_c and Q?
 - (i) Net reaction proceeds in the forward direction.
 - (ii) Net reaction proceeds in the backward direction.
 - (iii) No net reaction occurs.

(c)

(b) On the basis of Le Chatelier principle explain how temperature and pressure can be adjusted to increase the yield of ammonia in the following reaction:

 $N_{2(g)} + 3H_{2(g)} \leftrightarrows 2NH_{3(g)}$ $\Delta H = -92.38 \text{ kJmol}^{-1}.$

What will be the effect of addition of argon to the above reaction mixture at constant volume?

(c) The ionisation of hydrochloric acid in water is given below:

 $HCl_{(aq)} + H_2O_{(l)} \leftrightarrows H_3O^+_{(aq)} + Cl^-_{(aq)}$

Label two conjugate acid-base pairs in this ionisation.

- (d) Conjugate acid of a weak base is always stronger. What will be the decreasing order of basic strength of the following conjugate bases? OH⁻, RO⁻, CH₃COO⁻, Cl⁻
- 25. (i) Complete the following chemical equations:
 - (a) $\operatorname{Fe}_2O_3 + 3CO \xrightarrow{\Delta}$

(b) $CaCO_3 + 2HCl \rightarrow$

(ii) Write a brief account on the following:

- (a) Diamond is covalent, yet it has high melting point.
- (b) Atomic radius of gallium (135pm) is less than that of aluminium (143 pm)
- (c) Graphite is a good conductor of electricity but diamond is insulator.

OR

- (a) Account for the following:
- (i) Boron trihalides (BX₃) act as Lewis acids.

- (ii) PbCl₄ is a powerful oxidising agent.
- (iii) Graphite acts as a good lubricant.

(b) Complete the following reactions:

(i)
$$Na_2B_4O_7 + 2HCl + 5H_2O \rightarrow$$

- (ii) $B_2H_6 + 6NH_3 \xrightarrow{\Delta}$
- 26. (i) Explain the following reactions with suitable examples:
 - (a) Wurtz reaction
 - (b) Friedel-Crafts alkylation
 - (ii) An alkene 'A' on ozonolysis gives a mixture of ethanal and pentan-3-one. Write structure and IUPAC name of 'A'.
 - (iii) Give one chemical test to distinguish between ethene and ethyne.

OR

- (i) An alkyl halide(X) of formula $C_6H_{13}Cl$ on treatment with alcoholic KOH or potassiumbutoxide give two isomeric alkenes Y and $Z(C_6H_{12})$. Both alkenes on hydrogenation give 2,3-dimthylbutane. Predict structure of X,Y and Z.
- (ii) Give the main products of the reactions:

(a)
$$(Anhyd.AlCl_3/CH_3Cl)$$

(b) CH₃C(CH₃)=CH₂ + H₂O
$$\xrightarrow{H^+}$$