General Instructions:
a. All questions are compulsory
b. The question paper consists of 9 questions divided into four sections A, B, C and D.
c. Section A contains 3 questions of 1 mark each. Section B contains 2 questions of 2 marks each. Section C contains 3 questions of 3 marks each. Section D contains 1 question of 4 marks each.
d. There is no overall choice. However, internal choice has been provided in one question of 3 marks and one question of 4 marks. You have to attempt only one of the alternatives in all such questions.

SECTION A

1. Find the product of $(8+3 \sqrt{2})(8-3 \sqrt{2})$.
2. Write the degree of the polynomial $2 x^{5}-3 x^{4}+0 x^{7}+2 x^{2}+7 x-10$.
3. If $x^{51}+51$ is divided by $x+1$, then find the remainder.

SECTION B

4. If $x=2+\sqrt{3}$, then find the value $\left(x+\frac{1}{x}\right)^{3}$
5. Without finding the cubes, find the value of:
$(42)^{3}-(18)^{3}-(24)^{3}$.

INDIAN SCHOOL SOHAR
PERIODIC TEST 1 (2018-19)

MATHEMATICS

CLASS: IX
MAX.MARKS: 20
DATE: 20/05/18
General Instructions:
a. All questions are compulsory
b. The question paper consists of 9 questions divided into four sections A, B, C and D.
c. Section A contains 3 questions of 1 mark each. Section B contains 2 questions of 2 marks each. Section C contains 3 questions of 3 marks each. Section D contains 1 question of 4 marks each.
d. There is no overall choice. However, internal choice has been provided in one question of 3 marks and one question of 4 marks. You have to attempt only one of the alternatives in all such questions.

SECTION A

1. If $y^{21}+21$ is divided by $y+1$, then find the remainder.
2. Find the product of $(4+2 \sqrt{2})(4-2 \sqrt{2})$.
3. Write the degree of the polynomial $2 x^{6}-3 x^{5}+0 x^{8}+2 x^{4}+7 x-10$.

SECTION B

4. Without finding the cubes, find the value of:

$$
(30)^{3}+(20)^{3}-(50)^{3}
$$

5. If $x=2+\sqrt{3}$, then find the value $\left(x+\frac{1}{x}\right)^{3}$

SECTION C

6. If $\mathrm{p}=\frac{1}{3-2 \sqrt{2}}$ and $\mathrm{q}=\frac{1}{3+2 \sqrt{2}}$,evaluate $\mathrm{pq}(\mathrm{p}+\mathrm{q})$
7. Factorise : $1+a+b+c+a b+b c+a c+a b c$

OR
Prove that: $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left\lfloor(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right\rfloor$
8. Represent $\sqrt{29}$ on the number line.

SECTION D

9. If $x^{2}+\frac{1}{x^{2}}=51$, find (i) $x-\frac{1}{x}$
(ii) $\mathrm{x}^{3}-\frac{1}{\mathrm{x}^{3}}$

OR

If $p(x)=x^{4}-2 x^{3}+3 x^{2}-a x+b$ is divided by $(x-1)$ and $(x+1)$, it leaves the remainder 5 and 19 respectively. Find the values of a and b .

SECTION C

6. Represent $\sqrt{2} 6$ on the number line
7. Factorise : $1+a+b+c+a b+b c+a c+a b c$

OR
Prove that: $a^{3}+b^{3}+c^{3}-3 \mathrm{abc}=\frac{1}{2}(\mathrm{a}+b+\mathrm{c})\left\lfloor(\mathrm{a}-\mathrm{b})^{2}+(\mathrm{b}-\mathrm{c})^{2}+(\mathrm{c}-\mathrm{a})^{2}\right\rfloor$
8. If $m=\frac{1}{7-4 \sqrt{3}}$ and $n=\frac{1}{7+4 \sqrt{3}}$,evaluate $m n(m+n)$

SECTION D

9. If $\mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}=38$, find (i) $x-\frac{1}{x}$
(ii) $\mathrm{x}^{3}-\frac{1}{\mathrm{x}^{3}}$

OR
If $f(x)=x^{4}-2 x^{3}+3 x^{2}-a x+b$ is divided by $(x-1)$ and $(x+1)$, it leaves the remainder 5 and 19 respectively. Find the values of a and b.

