

INDIAN SCHOOL SOHAR FINAL EXAMINATION (2018 – 19) CHEMISTRY

CLASS : XI

DATE : 24.02.2019

MAX. MARKS : 70 DURATION : 3.00 HRS

General Instructions:

- (a) All questions are compulsory.
- (b) Section A: Question numbers 1 to 5 very short answer questions carrying 1 mark each.
- (c) Section B: Question numbers 6 to 12 are short answer questions carrying 2 marks each.
- (d) Section C: Question numbers 13 to 24 are also short answer questions carrying 3 marks each.
- (e) Section D: Question numbers 25 and 27 are long answer questions carrying 5 marks each.
- (f) There is no overall choice. However an internal choice has been provided in two questions of one mark, two questions of two marks, four questions of three marks and all the three questions of five marks weightage. You have to attempt only one of the choices in such questions.
- (g) Use log tables, if necessary, Use of calculator is not allowed.

Section A

- 1. Arrange the following metals in the order in which they displace each other from the solution of their salts. Al, Cu, Fe, Mg and Zn.
- 2. Write the names of isotopes of hydrogen.

OR

Draw the structure of H_2O_2 (s).

- 3. Find out the oxidation state of sodium in Na_2O_2 .
- 4. Why does boron trifluoride behave as a Lewis acid?

OR

PbCl₂ is more ionic then PbCl₄. Why?

5. List gases which are responsible for greenhouse effect.

Section B

- 6. A solution is prepared by adding 2 g of a substance A to 18 g of water. Calculate the mass per cent of the solute.
- 7. An atom of an element contains 29 electrons and 35 neutrons. Deduce (i) the number of protons and (ii) the electronic configuration of the element.

OR

Show that the circumference of the Bohr orbit for the hydrogen atom is an integral multiple of the de Broglie wavelength associated with the electron revolving around the orbit.

- 8. Explain why cations are smaller and anions are larger in radii than their parent atoms.
- 9. Use molecular orbital theory to explain why the Be₂ molecule does not exist.

- 10. Calculate the total pressure in a mixture of 8 g of dioxygen and 4 g of dihydrogen confined in a vessel of 1 dm³ at 27° . (R = 0.083 bar dm³K⁻¹mol⁻¹)
- 11. Enthalpies of formation of CO(g), CO₂(g), N₂O(g) and N₂O₄(g) are -110, -393,81 and 9.7 kJ/mol respectively. Find the value of Δ_r H for the reaction: N₂O₄(g) + 3CO(g) \rightarrow N₂O(g) + 3CO₂(g)

OR

Define the following:

- (i) Isolated System (ii) Intensive properties
- 12. What are electrophiles and nucleophiles? Explain with examples.

Section C

- 13. Calculate the concentration of nitric acid in moles per litre in a sample which has a density, 1.41 gmL^{-1} and the mass per cent of nitric acid in it being 60% (molecular mass of HNO₃ = 63).
- 14. The mass of an electron is 9.1×10^{-31} kg. If Kinetic energy is 3.0×10^{-25} J, Calculate its wavelength. (h= 6.626×10^{-34} Js)
- 15. Predict the formulas of the stable binary compounds that would be formed by the combination of the following pairs of elements.
 - (a) Lithium and oxygen (d) Silicon and oxygen
 - (b) Magnesium and nitrogen (e) Phosphorus and fluorine
 - (c) Aluminium and iodine (f) Element 71 and fluorine
- 16. Describe the hybridisation in case of PCl₅. Why are the axial bonds are longer as compared to equatorial bonds?
- 17. A sample of pure PCl₅ was introduced into an evacuated vessel at 473 K. After equilibrium was attained, concentration of PCl₅ was found to be $0.5 \times 10^{-1} \text{ molL}^{-1}$. If value of K_c is 8.3×10^{-3} , what are the concentrations of PCl₃ and Cl₂ at equilibrium? PCl₅(g) \Rightarrow PCl₃(g) + Cl₂(g)

OR

A mixture of 1.57 mol of N₂, 1.92 mol of H₂ and 8.13 mol of NH₃ is introduced into a 20 L reaction vessel at 500 K. At this temperature, the equilibrium constant, K_c for the reaction N₂(g) + 3H₂(g) \Rightarrow 2NH₃(g) is 1.7 x 10². Is the reaction mixture at equilibrium? If not, What is the direction of the net reaction?

18. The ionization constant of acetic acid is 1.74×10^{-5} . Calculate the degree of dissociation of acetic acid in its 0.05 M solution. Calculate the concentration of acetate ion in the solution and its pH.

OR

One mole of H₂O and one mole of CO are taken in 10 L vessel and heated to 725 K. At equilibrium 40% of water (by mass) reacts with CO according to the equation, $H_2O(g) + CO(g) \leftrightarrows H_2(g) + CO_2(g)$. Calculate the equilibrium constant for the reaction.

19. Balance the following redox reactions by ion-electron method:

(a) $MnO_4(aq) + I(aq) \rightarrow MnO_2(s) + I_2(s)$ (in basic medium)

(b) $\operatorname{Cr}_2\operatorname{O_7}^{2-}(\operatorname{aq}) + \operatorname{SO}_2(\operatorname{g}) \to \operatorname{Cr}^{3+}(\operatorname{aq}) + \operatorname{SO}_4^{2-}(\operatorname{aq})$ (in acidic medium)

- 20. Complete the following reactions:
 - (i) $PbS(s) + H_2O_2(aq) \rightarrow$
 - (ii) $MnO_4(aq) + H_2O_2(aq) \rightarrow$
 - (iii) $AICI_3(g) + H_2O(I) \rightarrow$

- 21. What happens when
 - (i) Sodium metal is dropped in water?
 - (ii) Sodium metal is heated in free supply of air?
 - (iii) Sodium peroxide dissolved in water?

OR

Describe two important uses of each of the following: (i) Caustic soda (ii) sodium carbonate (iii) quicklime

22. Complete the following reactions:

(i) $BF_3 + LiH \rightarrow$

- (ii) $P_4 + SOCI_2 \rightarrow$
- (iii) $Zn + dil. HNO_3 \rightarrow$

OR

What do you understand by (a) inert pair effect (b) allotropy and (c) catenation.

- 23. 0.3780 g of an organic chloro compound gas 0.5740 g of silver chloride to Carius estimation. Calculate the percentage of chlorine present in the compound.
- 24. What are the reactions involved for ozone layer depletion in the stratosphere?

Section D

25. What will be the pressure exerted by a mixture of 3.2 g of methane and 4.4g of carbon dioxide contained in a 9 dm³ flask at 27° C? (R = 0.083 bar dm³ K⁻¹mol⁻¹)

Explain the following properties giving suitable examples.

(i) Ferromagnetism (ii) paramagnetism (iii) Ferrimagnetism **OR**

Density of a gas is found to be 5.46 g/dm³ at 27⁰ C at 2 bar pressure. What will be its density at STP?

An element with density 2.8 gcm⁻³ forms a fcc unit cell with edge length 4 x 10^{-8} cm. Calculate the molar mass of the element. (Given N_A = 6.02 x 10^{23} mol⁻¹)

26. (i) Calculate the standard enthalpy of formation of $CH_3OH(I)$ from the following data:

$CH_3OH(I) + \frac{3}{2}O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$	$\Delta_r H^0 = -726 \text{ kJ/mol}$
$C(graphite) + O_2(g) \rightarrow CO_2(g)$	$\Delta_r H^0 = -393 \text{ kJ/mol}$
$H_2(g) + \frac{1}{2}O_2 \rightarrow H_2O(I)$	$\Delta_{\rm r} {\rm H}^0$ = -286 kJ/mol
Calculate the entheling shewes fourthe invesses	

 $\begin{array}{ll} \mbox{(ii)} & \mbox{Calculate the enthalpy change for the process} \\ & \mbox{CCl}_4(g) \rightarrow C(g) + 4Cl(g) \\ & \mbox{And calculate bond enthalpy of C-Cl in CCl}_4(g). \\ & \mbox{} \Delta_{vap} H^0(CCl_4) = 30.5 \ \mbox{kJ/mol} \\ & \mbox{} \Delta_a H^0(C) = 715 \ \mbox{kJ/mol}, \ \mbox{Where } \Delta_a H^0 \ \mbox{is enthalpy of atomisation} \\ & \mbox{} \Delta_f H^0 \ (CCl_4) = -135.5 \ \mbox{kJ/mol} \\ & \mbox{} \Delta_a H^0 \ (Cl_2) = 242 \ \mbox{kJ/mol} \\ \end{array}$

OR

- (i) For an isolated system. $\Delta U = 0$, what will be ΔS ?
- (ii) For the reaction at 298K, $2A + B \rightarrow C \Delta H = 400 \text{ kJ/mol}$ and $\Delta S = 0.2 \text{ kJ/mol}$. At what temperature will the reaction become spontaneous considering ΔH and ΔS to be constant over the temperature range. (R = 8.314 JK⁻¹mol⁻¹)

- (iii) For the reaction $2Cl(g) \rightarrow Cl_2(g)$, what are the signs of ΔH and ΔS ?
- (iv) For the reaction $2A(g) + B(g) \rightarrow 2D(g) \Delta U^0 = -10.5$ kJ and $\Delta S^0 = -44.1$ JK⁻¹. Calculate ΔG^0 for the reaction, and predict whether the reaction may occur spontaneously.
- 27. (i) Write the IUPAC name of the following compound:

CH₃(CH₂)₄ CH(CH₂)₃CH₃

CH2-CH(CH3)2

- (ii) Write the structures of all the alkenes which on hydrogenation give 2-methylbutane.
- (iii) How would you convert the following compounds into benzene?

(a) Ethyne (b) Ethene (c) Hexane

- OR
- (i) What are the necessary conditions for any system to be aromatic?
- (ii) How will you convert benzene into
 - (a) P-nitrobromobenzene (c) m-nitrochlorobenzene
 - (b) P-nitrotoluene (d) acetophenone?