MATHEMATICS

CLASS: X
DATE: 03 /02 /2019

MAX. MARKS: 80
DURATION: 3 HRS

General Instructions:

1. All questions are compulsory
2. The question paper consists of 30 questions divided into 4 sections A, B, C and D.
3. Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each. Section D comprises of 8 questions of 4 marks each.
4. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of four marks each .You have to attempt only one of the alternatives in all such questions.
5. Use of calculators is not permitted.

	Section-A		
1.	Find the values of k for each of the following quadratic equations, so that the equation $2 x^{2}+k x+3=0$ have two equal roots.	1	
	OR		
	If the discriminant of the equation $6 x^{2}-b x+2=0$ is 1 , then find the value of ' b '		
2.	If the common difference of an A.P is - 6 , find $\mathrm{a}_{16}-\mathrm{a}_{12}$	1	
3.	If $\sin A=\frac{1}{2}$, then find the value of $\cot A$	1	
	OR		
	If $\sin \theta=\frac{1}{5}$, then find the value of $\frac{1}{5} \cot ^{2} \theta+\frac{1}{5}$		
4.	The mid-point of line segment $A B$ is the point $P(0,4)$. If the coordinates of B are $(-2,3)$ then find the coordinates of A.	1	
5.	Write decimal expansion of $\frac{23}{2^{3} \times 5^{2}}$	1	
6.	In figure below if DE \|	$B C$ then find the value of x :	1

	Section-B	
7.	Find the LCM of 72, 80 and 120 using the fundamental theorem of arithmetic.	2
	OR	
	Find the HCF of 96 and 404 by the prime factorisation method. Hence, find their LCM.	
8.	Given the linear equation $2 x+3 y-8=0$, write another linear equation in two variables such that the geometrical representation of the pair so formed is: (i) intersecting lines (ii) parallel lines	2
9.	Find the sum of the first n odd natural numbers.	2
	OR	
	Which term of the AP 32, 29, 26.....is its first negative term.	
10.	A jar contains blue and green marbles. The number of green marbles is 5 more than twice the no. of blue. If probability of drawing a blue one at random is $\frac{2}{7}$, how many blue and green marbles are there in the jar ?	2
11.	Find a point on the x-axis which is equidistant from $\mathrm{A}(2,-5)$ and $\mathrm{B}(-2,9)$.	2
12.	Two unbiased coins are tossed simultaneously. Find the probability of getting (a) at least one head (b) at most one head.	2
	Section-C	
13.	Find the area of a quadrilateral $A B C D$ formed by the points $A(-2,-2), B(5,1), C(2,4)$ and D (-1,5).	3
	OR	
	Find k if points $A(k, 2-2 k), B(-k+1,2 k)$ and $C(-4-k, 6-2 k)$ are collinear.	
14.	If $\mathrm{A}+\mathrm{B}=90^{\circ}$, then prove that $\sqrt{\frac{\tan A \tan B+\tan A \cot B}{\sin A \sec B}-\frac{\sin ^{2} B}{\cos ^{2} A}}=\tan \mathrm{A}$	3
	OR	
	Prove that $\frac{\cos (90-\theta)}{1+\sin (90-\theta)}+\frac{1+\sin (90-\theta)}{\cos (90-\theta)}=2 \operatorname{cosec} \theta$	
15.	Find the area of the shaded region in figure, if $B C=B D=8 \mathrm{~cm}, A C=A D=15 \mathrm{~cm}$ and O is the centre of the circle. (Take $\pi=3.14$)	3
16.	Two tangents TP and TQ are drawn to a circle with centre O from an external point T.	3

23.	The difference of square of two numbers is 180 . The square of the smaller number is 8 times the large number. Find the two numbers.							4
	OR							
	A two - digit number is such that the product of the digits is 35 . When 18 is added to this number, the digits interchange their places. Determine the number.							
24.	A milk seller serves his customers using glasses shown in the figure. The inner diameter of the cylindrical glass is 7 cm and height 12 cm . The bottom of the glass has a raised hemispherical portion. Find the apparent and the actual capacities of the glass.							4
25.	The angle of elevation of a jet fighter from point A on ground is 60°. After a flight of 10 seconds, the angle changes to 30°. If the jet is flying at a speed of $648 \mathrm{~km} / \mathrm{hour}$, find the constant height at which the jet is flying. (Take $\sqrt{3}=1.73$)							4
	OR							
	From a point P on the ground the angle of elevation of the top of a 10 m tall building is 30°. A flag is hoisted at the top of the building and the angle of elevation of the top of the flagstaff from P is 45°. Find the length of the flagstaff and the distance of the building from the point P. (Take $\pi=3.14 ; \sqrt{3}=1.732$)							
26.	How many terms of the A.P. : $-15,-13,-11, \ldots$. are needed to make the sum -55 ? Explain the reason for double answer?							4
27.	The following table gives production yield per hectare of wheat of 100 farms of a village.							4
	Production yield (in $\mathrm{kg} / \mathrm{ha}$)	50-55	55-60	60-65	65-70	70-75	75-80	
	Number of farms	2	8	12	24	38	16	
	Change the distribution to a more than type distribution, and draw its ogive .Hence find the median.							
	OR							
	The mode of the following data is 65.625 hours. Find the value of p							
	C.I	0-20	20-40	40-60	60-80	80-100	100-120	
	Number of students	10	35	52	61	p	29	
28.	The radii of the ends of a frustum of a cone 45 cm high are 28 cm and 7 cm . Find its capacity in litres (Take $\pi=\frac{22}{7}$)							4
29.	Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°.							4
30.	Prove that $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}+\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{2}{2 \sin ^{2} \theta-1}$							4

