GENERAL INSTRUCTIONS:

- All questions are compulsory.
- The question paper consists of $\mathbf{3 0}$ questions divided into 4 sections A, B, C, D. Section A comprises of 6 questions of $\mathbf{1}$ mark each, section B comprises of $\mathbf{6}$ questions of $\mathbf{2}$ marks each, section C comprises $\mathbf{1 0}$ questions of $\mathbf{3}$ marks each and section D comprises of $\mathbf{8}$ questions of $\mathbf{4}$ marks each.
Use of calculators not permitted.

SECTION :A

1. If $\mathrm{a}=2$ and $\mathrm{b}=3$, find the value of $\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{a}-\frac{1}{b}\right)$

OR

If m and n are two natural numbers and $m^{n}=32$ then find the value of n^{m}.
2. Find the coefficient of x^{2} in $\left(3 x^{2}-5\right)\left(4+4 x^{2}\right)$.
3. If the perimeter of an equilateral triangle is 60 m , find its area.
4. Of the three angles of a triangle, one is twice the smallest angle and another is three times the smallest angle. Find the smallest angle.
5. How many lines can pass through a single point?
6. A machine generated these 10 codes:
(7A2,AAA, ABC,2B3,3B6,BB2,5AC,222,444,666).
A code is drawn at random to allot an employee. Find the probability that the code have atleast two digits.

OR
A die is thrown once. Find the probability of getting a prime number.

SECTION :B

7. Simplify $(x+y+z)^{2}-(x+y-z)^{2}$

OR

If $a+p=2$, prove that $a^{3}+6 a p+p^{3}-8=0$
8. Prove if two lines intersect each other, then the vertically opposite angles are equal.
9. Two parallel chords of a circle whose diameter is 13 cm are respectively 5 cm and 12 cm . Find the distance between them if they lie on opposite sides of centre.
10. In the figure, if $A B \| C D, E F$ is perpendicular to $C D$ and $\angle G E D=126^{\circ}$, find $\angle A G E, \angle G E F$ and $\angle F G E$.

11. A semi-circular sheet of metal of diameter 28 cm is bent into an open conical cup. Find the depth of the cup.

OR

The radius and height of a cylinder are in the ratio 2:3. If the volume of the cylinder is
$1617 \mathrm{~cm}^{3}$, find its height. (use $\pi=\frac{22}{7}$)
12. Find the median and mode of following data:
$41,48,39,52,41,48,36,41,37,35,36$

SECTION: C

13. Factorise: $1+a+b+c+a b+b c+a c+a b c$

OR
Factorise $4\left(x^{2}+1\right)^{2}+13\left(x^{2}+1\right)-12$.
14. Express $0.2353535 \ldots .$. in the form of $\frac{p}{q}$, where p and q are integers and $\mathrm{q} \neq 0$.
15. A field in the form of a parallelogram has sides 60 m and 40 m and one of its diagonals is 80 m long. Find the area of the parallelogram.

OR
The perimeter of a triangular field is 450 m and its sides are in the ratio 13:12:5. Find the area of the triangle.
16. Four sides of a quadrilateral are equal. Prove that its angles are bisected by its diagonals.
17. The following is the distribution of weights(in kg) of 50 persons:

Weights(in kg)	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$
Number of persons	12	10	9	7	5

Draw a histogram for the above data.
18. A wall of length 10 m was to be built across an open ground. The height of the wall is 4 m and thickness of the wall is 24 cm . If this wall is to be built up with bricks whose dimensions are $24 \mathrm{~cm} \times 10 \mathrm{~cm} \times 8 \mathrm{~cm}$, how many bricks would be required?
19. Prove parallelograms on the same base and between the same parallels are equal in area.

OR
Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that $\operatorname{ar}(A O D)=\operatorname{ar}(B O C)$. Prove that $A B C D$ is a trapezium.
20. In $\triangle P Q R$, if $P Q=P R$ and S is any point in the interior of $\triangle P Q R$ such that $\angle 1=\angle 2$ then prove that $\angle S Q R=\angle S R Q$

OR
In a $\triangle P Q R, P R>P Q$ and $P S$ is the bisector of $\angle Q P R$. Prove that $\angle P S R>\angle P S Q$.
21. Find three solution of the linear equation in two variables $2(x+3)=3(y-1)$.
22. In the figure, O is the centre of circle, $\angle B C O=30^{\circ}$ and $A E B=90^{\circ}$ and $O D$ is parallel to $B C$. Find x and y .

SECTION: D

23. Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a rectangle is a rhombus.

If the diagonals of a parallelogram are equal then show that it is a rectangle.
24. Three coins are tossed simultaneously 100 times with the following frequencies of different outcomes:

Outcome	No head	One head	Two head	Three head
Frequency	14	38	36	12

For this random experiment, compute the probability of getting:
(i) at most one head
(ii) One tail
(iii)No head
(iv)One head
25. A metallic sheet is of the rectangular shape with dimensions $48 \mathrm{~cm} \times 36 \mathrm{~cm}$. From each one of its corners, a square of 8 cm is cut-off. An open box is made of the remaining sheet. Find the volume of the box.

A hemispherical bowl of internal diameter 36 cm contains a liquid. This liquid is to be filled in cylindrical bottles of radius 3 cm and height 6 cm . How many bottles are required to empty the bowl?.
26. Construct a triangle $A B C$ in which $B C=6 \mathrm{~cm}, \angle B=60^{\circ}$ and $A C-A B=2 \mathrm{~cm}$.
27. Draw the graphs of the equations $3 x-2 y=12$ and $x+y-3=0$ on the same coordinate axes.
28. Factorise: $x^{3}-6 x^{2}+11 x-6$.

OR

The polynomial $f(x)=x^{4}-2 x^{3}+3 x^{2}-a x+b$ when divided by $(x-1)$ and $(x+1)$ leaves the remainders 5 and 19 respectively. Find the values of a and b.
29. Locate $\sqrt{7.4}$ on the number line and justify it.
30. Points $A(5,3), B(-2,3)$ and $D(5,-4)$ are three vertices of a square $A B C D$. Plot these points on a graph paper and hence find
(i) the coordinates of the vertex C .
(ii) area of square ABCD

