General Instructions:

a. All questions are compulsory.
b. Section A comprises $\mathbf{3}$ questions of 1 mark each, Section B comprises 2 questions of 2 marks each, Section C comprises 3 questions of 3 marks each and Section D comprises 1 question of 4 marks.

SECTION A

1. If $a=2, b=3$ then find the value of $a^{b}+b^{a}$.

OR

Find the value of $x^{a-b} \times x^{b-c} \times x^{c-a}$
2. If $\mathrm{x}=3+\sqrt{2}$, then find the value of $\mathrm{x}+\frac{1}{x}$.
3. The radius of the circle is 10 cm and the length of the chord is 12 cm . Find the distance of the chord from the centre.

SECTION B

4. Find the remainder when $f(x)=4 x^{3}-12 x^{2}+14 x-3$ is divided by $g(x)=x-\frac{1}{2}$

OR

If $(x+1)$ is a factor of $f(x)=k x^{3}+x^{2}-2 x+4 k-9$, then find the value of " k ".
5. In triangle $A B C, E$ is the mid-point of median $A D$. Find the ratio between ar ($\triangle B E D$) and ar ($\triangle A B C$).

SECTION C

6. Prove that parallelograms on the same base and between the same parallels are equal in area.

OR

In Fig., $A B C$ and $A B D$ are two triangles on the same base $A B$. If line- segment $C D$ is bisected by $A B$ at O, show that ar (ABC) = ar (ABD).

7. If the diagonals of a quadrilateral bisect each other at right angles, then prove that it is a rhombus.

OR
$A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rhombus.
8. Construct a triangle $P Q R$, in which $Q R=6 \mathrm{~cm}, \angle Q=60^{\circ}$ and $P R-P Q=2 \mathrm{~cm}$.

SECTION D

9. In an isosceles trapezium, prove that it is cyclic.

OR

In Fig., $A B$ is a diameter of the circle, $C D$ is a chord equal to the radius of the circle. $A C$ and $B D$ when extended intersect at a point E. Prove that $\angle A E B=60^{\circ}$

General Instructions:

c. All questions are compulsory.
d. Section A comprises 3 questions of 1 mark each, Section B comprises 2 questions of 2 marks each, Section C comprises 3 questions of 3 marks each and Section D comprises 1 question of 4 marks.

SECTION A

1. If $a=3, b=2$ then find the value of $b^{a}+a^{b}$.

OR

Find the value of $k^{a-b} \times k^{b-c} \times k^{c-a}$
2. If $x=4-\sqrt{2}$, then find the value of $x+\frac{1}{x}$.
3. The radius of the circle is 10 cm and the distance of the chord from the centre is 8 cm . Find the length of the chord.

SECTION B

4. Find the remainder when $f(x)=4 x^{3}-12 x^{2}+14 x-3$ is divided by $g(x)=x-\frac{1}{2}$

OR

If $(x-1)$ is a factor of $f(x)=k x^{3}+x^{2}-2 x+4 k-9$, then find the value of " k ".
5. In triangle $A B C, E$ is the mid-point of median $A D$. Find the ratio between ar ($\triangle B E D$) and ar ($\triangle A B C$).

SECTION C

6. Prove that parallelograms on the same base and between the same parallels are equal in area.

OR

In Fig., $A B C$ and $A B D$ are two triangles on the same base $A B$. If line- segment $C D$ is bisected by $A B$ at O, show that ar $(A B C)=\operatorname{ar}(A B D)$.

7. If the diagonals of a quadrilateral bisect each other at right angles, then prove that it is a rhombus.

OR
$A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rhombus.
8. Construct a triangle $A B C$, in which $B C=6 \mathrm{~cm}, \angle B=60^{\circ}$ and $A C-A B=2 \mathrm{~cm}$.

SECTION D

9. In an isosceles trapezium, prove that it is cyclic.

OR
In Fig., $A B$ is a diameter of the circle, $C D$ is a chord equal to the radius of the circle. $A C$ and $B D$ when extended intersect at a point E. Prove that $\angle A E B=60^{\circ}$

