Class: X
 Date: 05/01/2020
 General Instructions:

Maxi. Marks: $\mathbf{8 0}$
a. All questions are compulsory.
b. The question paper consists of 40 questions divided into four sections A, B, C and D.
c. Section A contains 20 questions of 1 mark each. Section B contains 6 questions of 2 marks each, Section C contains 8 questions of 3 marks each, Section D contains 6 questions of 4 marks each.
d. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
e. Use of calculators is not permitted.

SECTION A

Q 1 - Q 10 are multiple choice questions. Select the most appropriate answer from the given options.

1. HCF of the smallest composite number and smallest prime number is
a) 2
b) 6
c) 1
d) 4
2. The length of the tangent drawn from a point, whose distance from the centre of a circle is 20 cm and radius of the circle is 16 cm is
a) 16 cm
b) 12 cm
c) 50 cm
d) 32 cm
3. If $p(x)=2 x^{2}-3 x+5$, then $p(-1)$ is
a) $\quad-10$
b) 0
c)
10
d) 4
4. The mean, median and mode of a frequency distribution are related by the formula :
a) Mode $=2$ Median -3 Mean
b) Mode $=3$ Median -2 Mean
c) Mode $=2$ Median +3 Mean
d) Mode $=3$ Median +2 Mean
5. If $P(a, 4)$ is the mid point of the line segment joining the points $Q(-6,5)$ and $R(-2,3)$ then the value of a is
a) 12
b) 4
c) $\quad-4$
d) -12
6. The distance of the point $\mathrm{P}(-6,8)$ from the origin is
a) 100
b) $\sqrt{ } 10$
c) -10
d) 10
7. If α and β are zeroes of $x^{2}+5 x+8$, then the value of $\alpha+\beta$ is
a) 5
b) -5
c) 8
d) -8
8. Which of the following can be the probability of an event?
a) -0.02
b) $\quad 1.4$
c) $\frac{25}{26}$
d) $\frac{5}{4}$
9. If $x=2^{3} \times 3$ and $y=2^{2} \times 3^{2}$, then $\operatorname{LCM}(x, y)$ is
a) 72
b) 12
c) 24
d) 36
10. The decimal representation of $\frac{11}{40}$ will
a) terminate after 1 decimal place
b) terminate after 2 decimal places
c) terminate after 3 decimal places
d) not terminate

(Q 11-Q 15) Fill in the blanks

11. The ordinate of a point A on the y axis is 5 and B has coordinates $(-3,1)$, then the length of $A B$ is
12. The values of K for which the pair of linear equations $3 x-2 y-7=0$ and $6 x+K y+11=0$ has unique solution is \qquad

OR

If the roots of the quadratic equation $x^{2}+p x+16=0$ are equal then the value of p is \qquad
13. Value of $\cos 30^{\circ} \cdot \cos 90^{\circ} \cdot \cos 45^{\circ}$ is \qquad
14. If $\tan A=\frac{4}{3}$ then $\sin A-\cos A$ is \qquad
15. $\triangle A B C \cong \triangle R Q P, \angle A=80^{\circ}, \angle B=60^{\circ}$, then the value of $\angle \mathrm{P}$ is \qquad
(Q 16-Q 20) Answer the following
16. Find the value of $\sin 38^{\circ}-\cos 52^{\circ}$

OR

Find the value of $\left(\sin 30^{\circ} \cos 45^{\circ}+\cos 30^{\circ} \sin 45^{\circ}\right)$
17. If $100 \pi \mathrm{~cm}^{2}$ is the area of a circle, then find its diameter.
18. If the sum of first m terms of an AP is $2 m^{2}+3 m$, then what is its second term?
19. Two coins are tossed together. Find the probability of getting atleast one head.
20. If $\triangle A B C \sim \triangle D E F, B C=4 \mathrm{~cm}, E F=5 \mathrm{~cm}$ and $\operatorname{ar}(\triangle A B C)=80 \mathrm{~cm}^{2}$, then find $\operatorname{ar}(\triangle D E F)$.

SECTION B

Question numbers $\mathbf{2 1}$ to $\mathbf{2 6}$ carry 2 marks each.

21.In a single throw of two dice, find the probability of getting a total of 8 .
22. 17 cards numbered $1,2,3$ \qquad 16,17 are put in a box and mix thoroughly. One person draws a card from the box. Find the probability that the number on the card is
(i) a prime number
(ii) divisible by 3

OR

A lot of 30 bulbs contain 6 defective ones. One bulb is drawn at random from the lot. What is the probability that the bulb is good.
23.If $\sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right)$, where 4 A is an acute angle, find the value of A .

OR

If $5 \tan \theta=4$, find the value of $\frac{5 \sin \theta-3 \cos \theta}{5 \sin \theta+2 \cos \theta}$
24. Divide $6 x^{3}+13 x^{2}+x-2$ by $2 x+1$, find quotient and remainder.
25. Two tangents TP and TB are drawn to a circle with centre O from an external point T. Prove that $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$.

26. Find the area of a quadrant of a circle whose circumference is 22 cm .

SECTION C

Question numbers $\mathbf{2 7}$ to $\mathbf{3 5}$ carry 3 marks each.

27. Prove that $\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$

OR

Prove that $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} \mathrm{~A}+\cot ^{2} \mathrm{~A}$
28. Solve for x and y :
$133 x+87 y=353 ; 87 x+133 y=307$
29. Find the other zeroes of the polynomial $x^{4}-5 x^{3}+2 x^{2}+10 x-8$ if it is given that two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.
30. Prove that the parallelogram circumscribing a circle is a rhombus
31. Given figure shows the arrangement of desks in a classroom. Ashima, Bharati and Camella are seated at $A(3,1), B(6,4)$ and $C(8,6)$ respectively. Do you think they are seated in a line? Give reasons for your answer.

32. The radii of two circles are 4 cm and 3 cm . Find the radius of the circle whose area is equal to the sum of the areas of the two circles. Also find the circumference of this circle. (use $\pi=3.14$)
33. Draw a circle of radius 4 cm . From the point 7 cm away from its centre, construct the pair of tangents to the circle.

OR

Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.
34. Show that any positive odd integer is of the form $6 q+1$,or $6 q+3$, or $6 q+5$, where q is some integer.

OR

Given that $\sqrt{5}$ is irrational, prove that $2+\sqrt{5}$ is an irrational number.

SECTION D

Question numbers 35 to $\mathbf{4 0}$ carry 4 marks each.

35 . Find the sum of the first 50 positive integers divisible by 6

OR

The sum of the $4^{\text {th }}$ and $8^{\text {th }}$ terms of an AP is 24 and the sum of the $6^{\text {th }}$ and $10^{\text {th }}$ terms is 44 . Find the first three terms of the AP
36. As observed from the top of a 75 m high lighthouse from the sea level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships. (use $\sqrt{3}=1.732$).
37. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then prove that the other two sides are divided in the same ratio.

OR

Prove that in a right angle triangle, the square of the hypotenuse is equal the sum of the squares of the other two sides.
38. If the radii of the ends of a bucket 45 cm high are 28 cm and 7 cm . Find its capacity and surface area.

OR

A solid is in the form of a right circular cylinder with hemispherical ends. The total height of the solid is 19 cm and the diameter of the cylinder and the hemisphere is 7 cm . Find the volume and total surface area of the solid. (Use $\pi=\frac{22}{7}$)
39. The distribution below gives the weights of 30 students of a class.

Weight (in Kg)	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$
No. of students	2	3	8	6	6	3	2

Convert this distribution to less than type cumulative frequency distribution and draw its ogive.
40. Sum of the areas of two squares is $468 \mathrm{~m}^{2}$. If the difference of their perimeters is 24 m , find the sides of the two squares.

