INDIAN SCHOOL SOHAR
TERM II EXAMINATION 2019-2020

CHEMISTRY

CLASS :	XI	MAX MARKS	$: 70$
DATE :	07.01 .2020	TIME	$: 3.00$ HRS

(a) All questions are compulsory.
(b) Section A: Q.no. 1 to 20 are very short answer questions (objective type) and carry 1 mark each.
(c) Section B: Q.no. 21 to 27 are short answer questions and carry 2 marks each.
(d) Section C: Q.no. 28 to 34 are long answer questions and carry 3 marks each.
(e) Section D: Q.no. 35 to 37 are long answer questions and carry 5 marks each.
(f) There is no overall choice. However an internal choice has been provided in two questions in two marks, two questions of three marks and all the three questions of five marks weightage. You have to attempt only one of the choices in such questions.
(g) Use log tables if necessary, use of calculators is not allowed.

SECTION A

Read the given passage and answer the questions 1 to 5 that follow:

It may be noted that for 1 s orbital the probability density is maximum at the nucleus and it decreases sharply as we move away from it. On the other hand, for 2 s orbital the probability density first decreases sharply to zero and again starts increasing. After reaching small maxima it decreases again and approaches zero as the value of r increases further. The region where this probability density function reduces to zero is called nodal surfaces or simply nodes.

1. The number of nodes of ns orbitals is \qquad .
2. The number of angular nodes for 3 s orbital is \qquad .
3. The number of radial nodes for any orbital is \qquad .
4. Define nodal surface.
5. Draw the shape of p_{x} orbital and shade the nodal plane of it.

Questions 6 to 10 are one word or one sentence answers:

6. What volume of 17 g of NH_{3} at STP ($273 \mathrm{~K}, 1 \mathrm{~atm}$)?
7. State modern periodic law.
8. Arrange the given bonds in increasing order of polarity: $\mathrm{P}-\mathrm{H}, \mathrm{H}-\mathrm{O}, \mathrm{N}-\mathrm{H}, \mathrm{H}-\mathrm{F}$
9. How is density of gas related to its molar mass?
10. $\quad \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) ; \Delta \mathrm{H}=-890 \mathrm{kJmol}^{-1}$. What is the calorific value or fuel value of 1 kg of CH_{4} ?

Questions 11 to 15 are multiple choice questions:

11. For the reaction, $\mathrm{CO}(\mathrm{g})+\mathrm{ClO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{COCl}_{2}(\mathrm{~g})$ the K_{p} / K_{c} is equal to
(a) $\sqrt{R T}$
(b) RT
(c) $\frac{1}{R T}$
(d) 1.0
12. Which of the following is not a redox reaction?
(a) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
(b) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
(c) $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}$
(d) $\quad \mathrm{MnCl}_{3} \rightarrow \mathrm{MnCl}_{2}+1 / 2 \mathrm{Cl}_{2}$
13. Which of the following will not produce hydrogen?
(a) $\mathrm{Na}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(c) Copper and HCl
(b) $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O}$ (steam)
(d) Iron and oil $\mathrm{H}_{2} \mathrm{SO}_{4}$
14. Which of the following hydrides is electron-precise hydride?
(a) $\mathrm{B}_{2} \mathrm{H}_{6}$
(b) $\quad \mathrm{NH}_{3}$
(c) $\mathrm{H}_{2} \mathrm{O}$
(d) CH_{4}
15. Hydrogen peroxide is obtained by the electrolysis of \qquad _.
(a) water
(c) hydrochloric acid
(b) sulphuric acid
(d) Fused sodium peroxide

Question 16 to 20:

(a) Assertion and reason both are correct statements; reason is correct explanation for assertion.
(b) Assertion and reason both are correct statements; reason is not correct explanation for assertion.
(c) Assertion is correct statement but reason is wrong statement.
(d) Assertion is wrong statement but reason is correct statement.
16. Assertion : The density of Heavy water is higher at $11.2^{\circ} \mathrm{C}$.

Reason : The density of water is higher at $4^{\circ} \mathrm{C}$.
17. Assertion : 10 Volume $\mathrm{H}_{2} \mathrm{O}_{2}$ gives 10 mL of O_{2} at STP.

Reason : 10 volume $\mathrm{H}_{2} \mathrm{O}_{2}$ is 3.03% and 0.89 M .
18. Assertion : A mixture of o-nitrophenol and p-nitrophenol can be separated by steam distillation.
19. Assertion : Energy of resonance hybrid is equal to the average of energies of all canonical forms.
Reason : Resonance hybrid cannot be presented by a single structure.
20. Assertion : Toluene on Friedel-Crafts methylation gives o- and p-xylene.

Reason : $\quad \mathrm{CH}_{3}$ - group bonded to benzene ring increases electron density at o - and p position.

SECTION B

21. What will be the wavelength of a ball of mass 0.1 kg moving with a velocity of $10 \mathrm{~ms}^{-1} .(\mathrm{h}=6.626 \mathrm{x}$ $10^{-34} \mathrm{Js}$)
22. Give correct reason for the following:
(i) BF_{3} has a zero dipole moment although the $\mathrm{B}-\mathrm{F}$ bonds are polar.
(ii) All carbon to oxygen bonds in $\mathrm{CO}_{3}{ }^{2-}$ are equivalent.
23. Among the elements of the third period Na to Ar, pick out the elements:
(i) with highest first ionisation enthalpy
(ii) with largest atomic radius
(iii) which is most reactive non-metal?
(iv) which is most reactive metal?
24. Define:
(i) intensive properties (ii) adiabatic process
25. Balance the equation: $\mathrm{MnO}_{4}^{-}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+\mathrm{H}^{+}$

In neutral or faintly alkaline solution 8 moles of permanganate anions quantitatively oxidise the sulphate anions to produce X moles of sulphur containing product. What is the magnitude of X ?
26. Give the IUPAC name of the following compounds:
(i)

(ii)

27. Complete the following reactions:
(i)

OR
(i) Why is Wurtz reaction is carried out in dry ether?
(ii) Why do alkene have higher boiling point than alkane?

SECTION C

28. In an experiment, when hydrochloric acid was reacted with CaCO_{3} at STP, $48 \mathrm{~cm}^{3}$ of CO_{2} was formed. Calculate the number of mole of CO_{2} and number of molecules. (Atomic mass of $\mathrm{Ca}=40 ; \mathrm{C}=12$)
29. Calculate:
(i) Mass in grams of 5.8 mol of $\mathrm{N}_{2} \mathrm{O}$
(ii) Number of moles in $8.0 \mathrm{~g} \mathrm{O}_{2}$
(iii) Molar mass of 11.2 L of NH_{3} at STP weighs 8.5 g
(Atomic Mass of $\mathrm{N}=14 ; \mathrm{O}=16 ; \mathrm{H}=1$)
30. Among the elements $\mathrm{B}, \mathrm{Al}, \mathrm{C}$ and Si
(i) Which has the highest first ionisation enthalpy?
(ii) Which has the most negative electron gain enthalpy?
(iii) Which has the largest atomic radius?
31. Compare the reactive stability of the following species on the basis of molecular orbital theory and indicate their magnetic property. $\mathrm{O}_{2}{ }^{+}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}{ }^{2-}$
32. (i) Using the data given below, calculate the value of equilibrium constant for the reaction at 298 K . $3 \mathrm{CH} \equiv \mathrm{CH}(\mathrm{g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$ assuming ideal gas behaviour.
$\Delta_{\mathrm{f}} \mathrm{G}^{0}(\mathrm{HC} \equiv \mathrm{CH})=2.09 \times 10^{5} \mathrm{Jmol}^{-1} ; \Delta_{\mathrm{f}} \mathrm{G}^{0}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)=1.24 \times 10^{5} \mathrm{Jmol}^{-1}, \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
(ii) Based on your calculated value comment whether this process can be recommended as a practical method for making benzene.

OR
(i) State Hess's Law of constant heat summation. How does it follow from the first law of thermodynamics.
(ii) Determine $\Delta_{r} H^{0}$, at 298 K for reaction: $\mathrm{C}($ graphite $)+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) \Delta_{\mathrm{r}} \mathrm{H}^{0}=$? You are given:
(a) $\quad \mathrm{C}($ graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta_{\mathrm{r}} \mathrm{H}^{0}=-393.51 \mathrm{kJmol}^{-1}$
(b) $\quad \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Delta_{\mathrm{r}} \mathrm{H}^{0}=-285.8 \mathrm{kJmol}^{-1}$
(c) $\quad \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \Delta_{\mathrm{r}} \mathrm{H}^{0}=+890.3 \mathrm{kJmol}^{-1}$
33. (a) What is the oxidation number of Fe in $\mathrm{Fe}_{3} \mathrm{O}_{4}$?
(b) Balance the equation: $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Cr}^{3+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

OR
(i) Write the functions of salt bridged in electrochemical cell.
(ii) Give one decomposition reaction which is redox reaction and one which is not a redox reaction.
34. 0.3780 g of an organic chloro compound gave 0.5740 g of silver chloride in Carius estimation. Calculate the percentage of chlorine present in the compound. (Given that atomic mass of $\mathrm{Ag}=108 ; \mathrm{Cl}=35.5$)

SECTION D

35. (a) A discharge tube containing oxygen gas at $35^{\circ} \mathrm{C}$ is evacuated till the pressure is 5×10^{-2} mmHg . If the volume of discharge tube is 4.5 L , calculate the number of oxygen molecules will present in the tube. ($\mathrm{R}=0.0821 \mathrm{Latmmol}^{-1} \mathrm{~K}^{-1}$)
(b) Name the two processes that can be used to liquefy gases.
(c) What type of intermolecular forces are present in the following gases?
(i) noble gases
(ii) water

OR
(i) A vessel of $1.00 \mathrm{dm}^{3}$ capacity contains 16.00 g of oxygen and 8.00 g of hydrogen at $17^{\circ} \mathrm{C}$. Calculate the partial pressure of each gas and also the total pressure is the container. ($\mathrm{R}=$ $0.083 \mathrm{bar} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$; atomic mass of oxygen $=16$; Hydrogen $=1$)
(ii) According to kinetic molecular theory, explain why gases exert pressure?
(iii) How is isotherm at critical temperature of a gas different from those at lower temperature?
36. (i) For the reaction: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ the value of K_{p} is 3.6×10^{-2} at 500 K . Calculate the value of K_{c} for the reaction at the same temperature. $\mathrm{R}=0.083 \mathrm{LbarK}^{-1} \mathrm{~mol}^{-1}$.
(ii) What is the effect of increasing pressure in the reactions? Give reason.
(a) $\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(b) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$

OR
(i) Write the conjugate acid for Bronsted base of HCOO .
(ii) Calculate the pH of a $1.0 \times 10^{-8} \mathrm{M}$ solution of HCl .
(iii) Calculate the solubility of $\mathrm{A}_{2} \mathrm{X}_{2}$ in pure water, assuming that neither kind of ion reacts with water. (The solubility product of $\mathrm{A}_{2} \mathrm{X}_{2}, \mathrm{~K}_{\mathrm{sp}}=1.1 \times 10^{-23}$)
37. (i) How can you convert the following?
(a) Acetylene to nitrobenzene
(b) 2-Bromopropane to 1-bromopropane
(ii) Give a chemical test to distinguish between ethane and ethane.
(iii) Give a brief account of the following statements:
(a) n-Pentane has greater boiling point that ispentane
(b) CH_{4} cannot be synthesised by Wurtz reaction.

An alkyl halide $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}$ ' A ' reacts with ethanolic KOH to give an alkene ' B ', which reacts with Br_{2} give compound ' C ', which further on dehydrobromination gives an alkyne ' D '. On treatment with sodium metal in liquid ammonia, one mole of ' D ' gives one mole of the sodium salt of ' D ' and half a mole of hydrogen gas. Complete hydrogenation of ' D ' yields a straight chain alkane. Identify A, B, C and D. Give the reaction involved.

