General Instructions:
a. All questions are compulsory.
b. Section A comprises 1 question of 1 mark, Section B comprises 2 questions of 2 marks each, Section C comprises 2 questions of 3 marks each and Section D comprises 1 question of 4 marks.

SECTION A

1. Find the value of $(343)^{\frac{-1}{3}}$

SECTION B

2. Express $3.42 \overline{5}$ in the form p / q, where p and q are integers, $q \neq 0$
3. Find the remainder when $x^{4}+x^{3}-2 x^{2}+x+1$ is divide by $(x-1)$

OR
Using factor theorem, show that $(2 x+1)$ is a factor of $2 x^{3}+3 x^{2}-11 x-6$

INDIAN SCHOOL SOHAR

PERIODIC ASSESSMENT - 1

MATHEMATICS
Class: IX
MAX. MARKS: 15
Date: 12-05-2019

General Instructions:

c. All questions are compulsory.
d. Section A comprises 1 question of 1 mark, Section B comprises 2 questions of 2 marks each, Section C comprises 2 questions of 3 marks each and Section D comprises 1 question of 4 marks.

SECTION A

1. Find the value of $(216)^{\frac{-1}{3}}$

SECTION B

2. Express $0.12 \overline{3}$ in the form p / q, where p and q are integers, $q \neq 0$
3. Find the remainder when $x^{3}-p x^{2}+6 x-p$ is divided by $(x-p)$

OR
Using factor theorem, show that $(2 x+1)$ is a factor of $2 x^{3}+3 x^{2}-11 x-6$

SECTION C

4. Write the following in the ascending order of their magnitude: $\sqrt[4]{3}, \sqrt[3]{2}, \sqrt[3]{4}$
5. Show that $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{2}}=-1+\sqrt{3}$.

OR
If $\frac{3+\sqrt{7}}{3-\sqrt{7}}+\frac{3-\sqrt{7}}{3+\sqrt{7}}=a+b \sqrt{7}$, find the values of " a " and " b ".

SECTION D

6. Factorize: $3 x^{3}-4 x^{2}-12 x+16$

OR
If the polynomial $a x^{3}+3 x^{2}-13$ and $2 x^{3}-5 x+$ a when divided by $(x-2)$ leave the same remainder in each case, find the value of a.

SECTION C

4. Write the following in the ascending order of their magnitude: $\sqrt[4]{3}, \sqrt[3]{2}, \sqrt[3]{4}$
5. Simplify: $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{2}}$

OR
If $\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}=a+b \sqrt{3}$, find the values of " a " and " b ".

SECTION D

6. Factorize: $x^{3}-23 x^{2}+142 x-120$

OR
If the polynomial $a x^{3}+3 x^{2}-3$ and $2 x^{3}-5 x+a$ when divided by $(x-4)$ leave the same remainder in each case, find the value of a.

