

INDIAN SCHOOL SOHAR PERIODIC TEST II (2022-23) MATHEMATICS (041)

CLASS: IX DATE: 25/9/22 MAX. MARKS: 80 TIME ALLOWED: 3 HOURS

## **General Instructions:**

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each.
- 3. Section **B** has 5 questions carrying 02 marks each.
- 4. Section **C** has 6 questions carrying 03 marks each.
- 5. Section **D** has 4 questions carrying 05 marks each.
- 6. Section **E** has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks Questions of Section E.
- 8. Draw neat figures wherever required.

|      | SECTION A                                                                                |       |
|------|------------------------------------------------------------------------------------------|-------|
| S.NO | Section A consists of 20 questions of 1 mark each.                                       | MARKS |
| 1.   | When written in decimal form, which of the following will be a non-                      | 1     |
|      | terminating, non-recurring number?                                                       |       |
|      | (a) $1^{\frac{1}{9}}$ (b) $2^{\frac{1}{9}}$ (c) $2^{-9}$ (d) $9^{\frac{1}{2}}$           |       |
| 2.   | A rational number between $\frac{5}{4}$ and 2 is                                         |       |
|      | (a) $\frac{13}{2}$ (b) $\frac{13}{4}$                                                    | 1     |
|      | (c) $\frac{13}{8}$ (d) $\frac{8}{13}$                                                    |       |
| 3.   | Area of an equilateral triangle of side 'a' units can be calculated by using the         | 1     |
|      | formula                                                                                  |       |
|      | (a) $\sqrt{s^2(s-a)^2}$ (b) $(s-a)\sqrt{s^2(s-a)}$                                       |       |
|      | (c) $\sqrt{s(s-a)^2}$ (d) (s-a) $\sqrt{s(s-a)}$                                          |       |
| 4.   | The area of a triangle with sides 11 cm, 12 cm and 13 cm is                              | 1     |
|      | (a) $6\sqrt{105} \text{ cm}^2$ (b) $12\sqrt{105} \text{ cm}^2$                           |       |
|      | (c) $60\sqrt{35}$ cm <sup>2</sup> (d) $12$ cm <sup>2</sup>                               |       |
| 5.   | An isosceles right triangle has area 8cm <sup>2</sup> , then length of its hypotenuse is | 1     |
|      | (a) $\sqrt{32}$ cm (b) $\sqrt{16}$ cm (c) $\sqrt{48}$ (d) $\sqrt{24}$ cm                 |       |
|      |                                                                                          | 1     |

| (a) 1:2(b) 1:3(c) 2:3(d) 1:67.The measure of an angle is five times its complement. What is the measure of<br>the angle?<br>(a) 25°1(a) 25°(b) 35°(c) 65°(d) 75°8. $(2-\sqrt{3})(-2+\sqrt{3})$ when simplified is<br>(a) positive and irrational<br>(c) negative and irrational<br>(c) negative and irrational<br>(c) negative and irrational<br>(d) negative and rational19The length of each side of an equilateral triangle having an area of $9\sqrt{3}$ cm² is<br>(a) 8cm<br>(b) 6cm<br>(c) 36cm<br>(c) 36cm<br>(d) 4cm110In which quadrant does point (-3,5) lie?<br>(a) 1°<br>(b) 11°d<br>(c) 111°d<br>(c) 111°d<br>(d) 1V <sup>th</sup> 111Which of the following is not a criterion for congruence of triangles?<br>(a) 5AS<br>(b) ASA<br>(c) SSA<br>(d) SSS112In the figure, the value of y is<br>(a) 18°<br>(c) 40°<br>(d) 56°113In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE<br>(b) AC = DE<br>(c) AC = EF<br>(d) BC= DE114If x = 2 and y=1 is a solution of the equation $2x + 3k = y$ , then the value of k is<br>(a) no solution<br>(c) infinitely many solutions<br>(d) exactly two solutions116The point whose ordinate is -3 and which lies on y-axis is<br>(a) 60°<br>(b) 120°<br>(c) 110°<br>(c) 110°117The angle which is twice its supplement is<br>(a) 60°<br>(b) 120°<br>(c) (1-3)118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.The measure of an angle is five times its complement. What is the measure of<br>the angle?<br>(a) 25° (b) 35° (c) 65° (d) 75°18. $(-2-\sqrt{3})(-2+\sqrt{3})$ when simplified is<br>(a) positive and irrational<br>(c) negative and irrational<br>(d) negative and rational<br>(d) negative and rational19The length of each side of an equilateral triangle having an area of $9\sqrt{3}$ cm² is<br>(a) 8cm (b) 6cm (c) 36cm (d) 4cm110In which quadrant does point (-3,5) lie?<br>(a) 1th (b) 11nd (c) 111rd (d) 1Vth111Which of the following is not a criterion for congruence of triangles?<br>(a) SAS (b) ASA (c) SSA (d) SSS112In the figure, the value of y is<br>(a) 18° (b) 140°<br>(c) 40° (d) 56°113In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE (b) AC = DE (c) AC = EF (d) BC = DE114If x = 2 and y=1 is a solution of the equation $2x + 3k = y$ , then the value of k is<br>(a) no solution (b) unique solution<br>(c) ifninitely many solutions (d) exactly two solutions115The equation y = 4x - 7 has<br>(a) 0.50° (b) 120° (c) 110°116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3, 0) (b) (0, -3) (c) (1, -3) (d) (-3, -3)117The agle which is twice its supplement is<br>(a) 60° (b) 120° (c) 110°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| the angle?<br>(a) 25° (b) 35° (c) 65° (d) 75°8. $(-2-\sqrt{3})(-2+\sqrt{3})$ when simplified is<br>(a) positive and irrational<br>(c) negative and irrational<br>(d) negative and rational<br>(d) negative and rational19The length of each side of an equilateral triangle having an area of $9\sqrt{3}$ cm² is<br>(a) 8 cm (b) 6 cm (c) 36 cm (d) 4 cm110In which quadrant does point (-3,5) lie?<br>(a) 1st<br>(b) 1m^d (c) 111rd<br>(c) 111rd<br>(d) 1Vth111Which of the following is not a criterion for congruence of triangles?<br>(a) 5AS (b) ASA (c) SSA (d) SSS112In the figure, the value of y is<br>(a) 18° (b) 140°<br>(c) 40° (d) 56°113In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE (b) AC = DE (c) AC = EF (d) BC = DE114If x = 2 and y=1 is a solution of the equation $2x + 3k = y$ , then the value of k is<br>(a) no solution (b) unique solution<br>(c) infinitely many solutions115The equation $y = 4x - 7$ has<br>(a) no solution (b) (0, -3) (c) (1, -3) (d) (-3, -3)116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3, 0) (b) (0, -3) (c) (1, -3) (d) (-3, -3)117The angle which is twice its supplement is<br>(a) 60° (b) 120° (c) 110° (d) 130°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (a) $25^{\circ}$ (b) $35^{\circ}$ (c) $65^{\circ}$ (d) $75^{\circ}$ 8. $(-2-\sqrt{3})(-2+\sqrt{3})$ when simplified is<br>(a) positive and irrational<br>(c) negative and irrational<br>(d) negative and rational<br>(d) negative and rational19The length of each side of an equilateral triangle having an area of $9\sqrt{3}$ cm <sup>2</sup> is<br>(a) 8 cm (b) 6 cm (c) 36 cm (d) 4 cm110In which quadrant does point (-3,5) lie?<br>(a) 1st (b) 11 <sup>nd</sup> (c) 111 <sup>rd</sup> (d) 1V <sup>th</sup> 111Which of the following is not a criterion for congruence of triangles?<br>(a) SAS (b) ASA (c) SSA (d) SSS112In the figure, the value of y is<br>(a) 18° (b) 140°<br>(c) 40° (d) 56°113In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE (b) AC = DE (c) AC = EF (d) BC = DE114If $x = 2$ and $y = 1$ is a solution of the equation $2x + 3k = y$ , then the value of k is<br>(a) -1 (b) 2 (c) 1 (d) 3115The equation $y = 4x - 7$ has<br>(a) no solution (b) unique solutions116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3,0) (b) (0,-3) (c) (1,-3) (d) (-3,-3)117The angle which is twice its supplement is<br>(a) 60° (b) 120° (c) 110° (d) 130°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8. $(-2-\sqrt{3})(-2+\sqrt{3})$ when simplified is<br>(a) positive and irrational<br>(c) negative and irrational<br>(c) negative and irrational<br>(d) negative and rational19The length of each side of an equilateral triangle having an area of $9\sqrt{3}$ cm <sup>2</sup> is<br>(a) 8cm<br>(b) 6cm<br>(c) 36cm<br>(d) 4cm110In which quadrant does point (-3,5) lie?<br>(a) 1st<br>(b) 1rd<br>(c) 11rd<br>(d) 1Vth111Which of the following is not a criterion for congruence of triangles?<br>(a) 18°<br>(c) 40°<br>(c) 40°<br>(c) 40°<br>(c) 40°<br>(d) 56°113In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE<br>(b) AC = DE<br>(c) AC = EF<br>(d) BC= DE114If $x = 2$ and $y=1$ is a solution of the equation $2x + 3k = y$ , then the value of k is<br>(a) no solution<br>(c) infinitely many solutions115The equation $y = 4x - 7$ has<br>(a) (-3, -3)116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3, -3)117The angle which is twice its supplement is<br>(a) 60°<br>(b) 120°<br>(c) 110°<br>(c) 110°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (a) positive and irrational<br>(c) negative and irrational<br>(c) negative and irrational<br>(d) negative and rational9The length of each side of an equilateral triangle having an area of $9\sqrt{3}$ cm² is<br>(a) 8cm<br>(b) 6cm<br>(c) 36cm<br>(d) 4cm110In which quadrant does point (-3,5) lie?<br>(a) 1st<br>(b) 11nd<br>(c) 111rd<br>(c) 111rd<br>(d) 1Vth111Which of the following is not a criterion for congruence of triangles?<br>(a) 5AS<br>(b) ASA<br>(c) SSA<br>(c) SSA<br>(d) SSS112In the figure, the value of y is<br>(a) 18°<br>(c) 40°<br>(c) 40°<br>(c) 40°<br>(d) 56°113In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE<br>(b) AC = DE<br>(c) AC = EF<br>(d) BC = DE114If x = 2 and y=1 is a solution of the equation 2x + 3k = y, then the value of k is<br>(a) no solution<br>(c) infinitely many solutions<br>(d) exactly two solutions115The equation y = 4x - 7 has<br>(a) (-3, 0)<br>(c) (1, -3)<br>(d) (-3, -3)116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3, 0)<br>(b) (0, -3)<br>(c) (110°<br>(c) 110°116The angle which is twice its supplement is<br>(a) 60°<br>(b) 120°<br>(c) 110°<br>(c) 110°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (c) negative and irrational(d) negative and rational9The length of each side of an equilateral triangle having an area of $9\sqrt{3}$ cm² is1(a) 8cm(b) 6cm(c) 36cm(d) 4cm10In which quadrant does point (-3,5) lie?<br>(a) Ist1(a) 1st(b) IIn <sup>nd</sup> (c) IIIrd(d) IV <sup>th</sup> 11Which of the following is not a criterion for congruence of triangles?<br>(a) SAS1(a) SAS(b) ASA(c) SSA(d) SSS12In the figure, the value of y is<br>(c) 40°11(a) 18°(b) 140°<br>(c) 40°11(a) 8C = RE(b) AC = DE(c) AC = EF(d) BC = DE13In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE(b) AC = DE(c) AC = EF14If x = 2 and y=1 is a solution of the equation 2x + 3k = y, then the value of k is<br>(a) no solution<br>(c) infinitely many solutions115The equation y = 4x - 7 has<br>(a) (-3, 0)11(a) (-3,0)(b) (0,-3)<br>(c) (1,-3)(d) (-3,-3)116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3,0)11(a) 60°(b) 120°<br>(c) 110°(d) 130°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9The length of each side of an equilateral triangle having an area of $9\sqrt{3}$ cm² is<br>(a) 8cm<br>(b) 6cm<br>(c) 36cm<br>(d) 4cm110In which quadrant does point (-3,5) lie?<br>(a) 1st<br>(b) 11md<br>(c) IIIrd<br>(c) IIIrd<br>(d) IVth111Which of the following is not a criterion for congruence of triangles?<br>(a) SAS<br>(b) ASA<br>(c) SSA<br>(c) SSA<br>(d) SSS112In the figure, the value of y is<br>(a) 18°<br>(c) 40°<br>(c) 40°<br>(c) 40°<br>(d) 56°113In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE<br>(b) AC = DE<br>(c) AC = EF<br>(c) AC = EF<br>(d) BC= DE114If x = 2 and y=1 is a solution of the equation $2x + 3k = y$ , then the value of k is<br>(a) no solution<br>(c) infinitely many solutions<br>(d) exactly two solutions115The equation $y = 4x - 7$ has<br>(a) no solution<br>(c) infinitely many solutions<br>(d) (-3, -3)116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3,0)<br>(b) (0, -3)<br>(c) (1, -3)<br>(d) (-3, -3)117The angle which is twice its supplement is<br>(a) 60°<br>(b) 120°<br>(c) 110°<br>(c) 110°<br>(d) 130°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (a) 8cm(b) 6cm(c) 36cm(d) 4cm10In which quadrant does point (-3,5) lie?<br>(a) 1st1111Which of the following is not a criterion for congruence of triangles?<br>(a) SAS111Which of the following is not a criterion for congruence of triangles?<br>(a) SAS112In the figure, the value of y is<br>(a) 18°<br>(c) 40°<br>(c) 40°<br>(c) 40°113In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE114If x = 2 and y=1 is a solution of the equation $2x + 3k = y$ , then the value of k is<br>(a) no solution<br>(c) infinitely many solutions115The equation $y = 4x - 7$ has<br>(a) (-3, -3)116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3,0)<br>(b) (0,-3)117The angle which is twice its supplement is<br>(a) 60°<br>(b) 120°<br>(c) 110°<br>(c) 110°<br>(d) 130°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10In which quadrant does point (-3,5) lie?<br>(a) $ s^{t}$<br>(b) II <sup>nd</sup><br>(c) III <sup>rd</sup><br>(d) IV <sup>th</sup> 111Which of the following is not a criterion for congruence of triangles?<br>(a) SAS<br>(b) ASA<br>(c) SSA<br>(c) SSA<br>(d) SSS112In the figure, the value of y is<br>(a) 18°<br>(c) 40°<br>(c) 40°<br>(c) 40°<br>(d) 56°113In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE<br>(b) AC = DE<br>(c) AC = DE<br>(c) AC = EF<br>(d) BC = DE114If x = 2 and y=1 is a solution of the equation $2x + 3k = y$ , then the value of k is<br>(a) no solution<br>(c) infinitely many solutions<br>(d) exactly two solutions116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3,0)<br>(b) (0,-3)<br>(c) (1,-3)117The angle which is twice its supplement is<br>(a) 60°<br>(b) 120°<br>(c) 110°<br>(c) 110°<br>(c) 110°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (a) Ist(b) IInd(c) IIIrd(d) IVth11Which of the following is not a criterion for congruence of triangles?<br>(a) SAS112In the figure, the value of y is<br>(a) 18°<br>(c) 40°113In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE114If x = 2 and y=1 is a solution of the equation $2x + 3k = y$ , then the value of k is<br>(a) -1115The equation $y = 4x - 7$ has<br>(a) no solution<br>(c) infinitely many solutions116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3,0)<br>(b) (0,-3)1017The angle which is twice its supplement is<br>(a) 60°<br>(b) 120°<br>(c) (1,-3)118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11Which of the following is not a criterion for congruence of triangles?<br>(a) SAS<br>(b) ASA<br>(c) SSA<br>(c) SSA<br>(c) SSA<br>(d) SSS112In the figure, the value of y is<br>(a) 18°<br>(c) 40°<br>(c) 40°<br>(c) 40°<br>(d) 56°113In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE<br>(b) AC = DE<br>(c) AC = EF<br>(c) AC = EF<br>(d) BC= DE114If x = 2 and y=1 is a solution of the equation $2x + 3k = y$ , then the value of k is<br>(a) -1<br>(b) 2<br>(c) 1<br>(d) 3115The equation $y = 4x - 7$ has<br>(a) no solution<br>(c) infinitely many solutions<br>(d) exactly two solutions116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3,0)<br>(b) (0,-3)<br>(c) (1,-3)<br>(d) (-3,-3)117The angle which is twice its supplement is<br>(a) 60°<br>(b) 120°<br>(c) 110°<br>(c) 110°<br>(d) 130°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (a) SAS(b) ASA(c) SSA(d) SSS12In the figure, the value of y is<br>(a) 18°1(a) 18°(b) 140°<br>(c) 40° $40^{\circ}$ $40^{\circ}$ (c) 40°(d) 56° $40^{\circ}$ $40^{\circ}$ 13In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE114If x = 2 and y=1 is a solution of the equation $2x + 3k = y$ , then the value of k is<br>(a) -1115The equation $y = 4x - 7$ has<br>(a) no solution<br>(c) infinitely many solutions116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3, 0)<br>(b) (0, -3)117The angle which is twice its supplement is<br>(a) 60°<br>(b) 120°<br>(c) 110°<br>(c) 110°<br>(d) 130°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12In the figure, the value of y is<br>(a) $18^{\circ}$ (b) $140^{\circ}$<br>(c) $40^{\circ}$ (d) $56^{\circ}$ 113In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE114If $x = 2$ and $y=1$ is a solution of the equation $2x + 3k = y$ , then the value of k is<br>(a) $-1$ (b) 2 (c) 1 (d) 3115The equation $y = 4x - 7$ has<br>(a) no solution<br>(c) infinitely many solutions116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3, 0) (b) (0, -3) (c) (1, -3) (d) (-3, -3)117The angle which is twice its supplement is<br>(a) $60^{\circ}$ (b) $120^{\circ}$ (c) $110^{\circ}$ (d) $130^{\circ}$ 118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| In the near of the total of 1 as<br>(a) 18° (b) 140°<br>(c) 40° (d) 56°Image: the total of 1 as<br>(c) 40° (d) 56°Image: the total of 1 as<br>(c) 40° (d) 56°13In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE (b) AC = DE (c) AC = EF (d) BC = DE114If x = 2 and y=1 is a solution of the equation $2x + 3k = y$ , then the value of k is<br>(a) -1 (b) 2 (c) 1 (d) 3115The equation y = 4x - 7 has<br>(a) no solution<br>(c) infinitely many solutions116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3,0) (b) (0,-3) (c) (1,-3) (d) (-3,-3)117The angle which is twice its supplement is<br>(a) 60° (b) 120° (c) 110° (d) 130°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (c) 40°(c) 70°(c) 70°13In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE114If x = 2 and y=1 is a solution of the equation 2x + 3k = y, then the value of k is<br>(a) -1114If x = 2 and y=1 is a solution of the equation 2x + 3k = y, then the value of k is<br>(a) -1115The equation y = 4x - 7 has<br>(a) no solution<br>(c) infinitely many solutions116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3,0)<br>(b) (0,-3)117The angle which is twice its supplement is<br>(a) 60°<br>(b) 120°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE<br>(b) AC = DE114If x = 2 and y=1 is a solution of the equation $2x + 3k = y$ , then the value of k is<br>(a) -1<br>(b) 2<br>(c) 1<br>(d) 3115The equation y = 4x - 7 has<br>(a) no solution<br>(c) infinitely many solutions116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3,0)<br>(b) (0,-3)117The angle which is twice its supplement is<br>(a) 60°<br>(b) 120°<br>(c) 110°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Image: Instant the second period of the second period p               |
| 13In triangles ABC and DEF, AB = FD and $\angle A = \angle D$ . The two triangles will be<br>congruent by SAS axiom if<br>(a) BC = FE1(a) BC = FE(b) AC = DE(c) AC = EF(d) BC= DE14If x = 2 and y=1 is a solution of the equation 2x + 3k = y, then the value of k is<br>(a) -11(b) 2(c) 1(d) 315The equation y = 4x - 7 has<br>(a) no solution<br>(c) infinitely many solutions116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3,0)117The angle which is twice its supplement is<br>(a) 60°118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Congruent by SAS axiom if(a) BC = FE(b) AC = DE(c) AC = EF(d) BC = DE14If x = 2 and y=1 is a solution of the equation $2x + 3k = y$ , then the value of k is1(a) -1(b) 2(c) 1(d) 315The equation y = 4x - 7 has1(a) no solution(b) unique solution1(c) infinitely many solutions(d) exactly two solutions116The point whose ordinate is -3 and which lies on y-axis is1(a) (-3,0)(b) (0,-3)(c) (1,-3)(d) (-3,-3)17The angle which is twice its supplement is1(a) 60°(b) 120°(c) 110°(d) 130°18What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (a) $BC = PE$ (b) $AC = DE$ (c) $AC = EP$ (d) $BC = DE$ 14If $x = 2$ and $y=1$ is a solution of the equation $2x + 3k = y$ , then the value of k is1(a) $-1$ (b) $2$ (c) $1$ (d) $3$ 15The equation $y = 4x - 7$ has1(a) no solution(b) unique solution1(c) infinitely many solutions(d) exactly two solutions116The point whose ordinate is -3 and which lies on y-axis is1(a) $(-3,0)$ (b) $(0,-3)$ (c) $(1,-3)$ (d) $(-3,-3)$ 17The angle which is twice its supplement is1(a) $60^{\circ}$ (b) $120^{\circ}$ (c) $110^{\circ}$ (d) $130^{\circ}$ 18What is the sum of the abscissa of the points $(-1,4)$ and $(-3, -5)$ ?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14If x = 2 and y=1 is a solution of the equation $2x + 3k = y$ , then the value of k is1(a) -1(b) 2(c) 1(d) 315The equation y = 4x - 7 has1(a) no solution(b) unique solution1(c) infinitely many solutions(d) exactly two solutions116The point whose ordinate is -3 and which lies on y-axis is(d) (-3,-3)17The angle which is twice its supplement is1(a) 60°(b) 120°(c) 110°(d) 130°18What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (a) -1(b) 2(c) 1(d) 315The equation y = 4x - 7 has1(a) no solution(b) unique solution1(c) infinitely many solutions(d) exactly two solutions116The point whose ordinate is -3 and which lies on y-axis is(d) (-3,-3)17The angle which is twice its supplement is1(a) $60^{\circ}$ (b) $120^{\circ}$ (c) $110^{\circ}$ 18What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15The equation y = 4x - 7 has1(a) no solution(b) unique solution1(c) infinitely many solutions(d) exactly two solutions116The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3,0)(b) (0,-3)(c) (1,-3)17The angle which is twice its supplement is<br>(a) 60°1118What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (a) no solution(b) unique solution(c) infinitely many solutions(d) exactly two solutions16The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3,0)(b) (0,-3)(c) (1,-3)(d) (-3,-3)17The angle which is twice its supplement is<br>(a) 60°10°(a) 60°(b) 120°(c) 110°18What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (c) infinitely many solutions(d) exactly two solutions16The point whose ordinate is -3 and which lies on y-axis is<br>(a) (-3,0)(b) (0,-3)17The angle which is twice its supplement is<br>(a) 60°(b) 120°18What is the sum of the abscissa of the points (-1,4) and (-3, -5)?1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16       The point whose ordinate is -3 and which lies on y-axis is <ul> <li>(a) (-3,0)</li> <li>(b) (0,-3)</li> <li>(c) (1,-3)</li> <li>(d) (-3,-3)</li> </ul> 17     The angle which is twice its supplement is <ul> <li>(a) 60°</li> <li>(b) 120°</li> <li>(c) 110°</li> <li>(d) 130°</li> </ul> 1           18         What is the sum of the abscissa of the points (-1,4) and (-3, -5)?         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (a) (-3,0)       (b) (0,-3)       (c) (1,-3)       (d) (-3,-3)         17       The angle which is twice its supplement is       1         (a) 60°       (b) 120°       (c) 110°       (d) 130°         18       What is the sum of the abscissa of the points (-1,4) and (-3, -5)?       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17       The angle which is twice its supplement is       1         (a) 60°       (b) 120°       (c) 110°       (d) 130°         18       What is the sum of the abscissa of the points (-1,4) and (-3, -5)?       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (a) 60°       (b) 120°       (c) 110°       (d) 130°         18       What is the sum of the abscissa of the points (-1,4) and (-3, -5)?       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18 What is the sum of the abscissa of the points (-1,4) and (-3, -5)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (a) -4 (b) -1 (c) 2 (d) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 19 Which of these equations has (1.5,4) as one of the solutions?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (a) $20x + 5y = 50$ (b) $20x + 5y = 87.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (0) 20x + 5y = 270 	(0) 20x + 5y = 520 	(1) 20x + 50 	(1) |
| $20     AB - QR, BC - RF and CA - FQ, then (a) AABC \simeq APOR (b) ACBA \simeq APBO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|    | SECTION B                                                                                                                                                            |   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | Section B consists of 5 questions of 2 marks each                                                                                                                    |   |
| 21 | Give equations of two lines passing through (4, -3). How many more such lines are there?                                                                             | 2 |
| 22 | ABCD is a square and P is the midpoint of AD.<br>PB and PC are joined. Prove that $\angle PCB = \angle PBC$                                                          | 2 |
| 23 | In $\triangle$ ABC altitudes BE and CF to sides AC and AB are equal.<br>Show that $\triangle$ ABC is an isosceles triangle                                           | 2 |
| 24 | What is the value of (256) <sup>0.16</sup> x (256) <sup>0.09</sup>                                                                                                   | 2 |
|    | <b>OR</b> Which is smaller? $\sqrt[4]{10}$ or $\sqrt[3]{9}$ (Justify your answer)                                                                                    |   |
| 25 | Find whether $(\sqrt{2}, 3\sqrt{2})$ is a solution of x – 3y = 9 or not.                                                                                             | 2 |
|    | OR                                                                                                                                                                   |   |
|    | If the point (4, -2) lies on the graph of 2x = ay + 3, then find the value of a.                                                                                     |   |
|    | SECTION C                                                                                                                                                            |   |
|    | Section C consists of 6 questions of 3 marks each.                                                                                                                   |   |
| 26 | Sides of a triangle are in the ratio 12: 17: 25 and its perimeter is 540cm. Find its area.                                                                           | 3 |
| 27 | In the figure, $\Delta$ PQR is an equilateral triangle<br>with coordinates of the vertices Q and R as<br>(-2, 0) and (2,0). Find the coordinates of the<br>vertex P. | 3 |
| 28 | Locate $\sqrt{13}$ on the number line.                                                                                                                               | 3 |
|    | OR                                                                                                                                                                   |   |
|    | Represent $\sqrt{5.2}$ on the number line                                                                                                                            |   |

| 29 | In an isosceles triangle ABC with AB = AC, D and E are<br>points such that BE = CD.<br>Show that AD = AE.<br>A $A$ $B$ $B$ $D$ $E$ C                                                            | 3 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 30 | Lines AB and CD intersect at O. If $\angle BOD = 40^{\circ}$ and $\angle AOC + \angle BOE = 70^{\circ}$ , find $\angle BOE$ and reflex $\angle COE$                                             | 3 |
|    | OR<br>POQ is a line. Ray OR is perpendicular to line PQ.                                                                                                                                        |   |
|    | OS is another ray lying between rays OP and OR.<br>Prove that $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$                                                                              |   |
| 31 | Prove that the angles opposite to equal sides of a triangle are equal.                                                                                                                          | 3 |
|    | SECTION D                                                                                                                                                                                       |   |
|    | Section D consists of 4 questions of 5 marks each.                                                                                                                                              |   |
| 32 | If a = $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ and b = $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ , find the values of a <sup>2</sup> +b <sup>2</sup> - 5ab                            | 5 |
|    | Rationalize the denominator $\frac{1}{\sqrt{7} + \sqrt{6} - \sqrt{13}}$                                                                                                                         |   |
| 33 | It is given that $\angle$ XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle$ ZYP, find $\angle$ XYQ and reflex $\angle$ QYP          | 5 |
| 34 | Prove that if in two triangles, two angles and the included side of one triangle<br>are equal to two angles and the included side of another triangle, then the two<br>triangles are congruent. | 5 |

| 35 | In right triangle ABC, right angled at C, M is the midpoint of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Show that (i) $\triangle AMC \cong \triangle BMD$<br>(ii) $\angle DBC$ is a right angle | 5 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | OR                                                                                                                                                                                                                                  |   |
|    | AB is a line segment and C is its mip-point. D and E are<br>points on the same side of AB such that $\angle DBC = \angle EAC$<br>and $\angle ECB = \angle DCA$ . Show that (i) $\triangle DBC \cong \triangle EAC$                  |   |
|    | (ii) DC = EC                                                                                                                                                                                                                        |   |
|    | SECTION E                                                                                                                                                                                                                           |   |
| 36 | Case study based questions are compulsory.                                                                                                                                                                                          |   |
| 30 | triangles. The side lengths of the triangles are 6cm,<br>6cm and 8cm. Use the information to answer the<br>following questions.                                                                                                     | 1 |
|    | (i) What is the area of the tile?                                                                                                                                                                                                   |   |
|    | (ii) What is the area of one triangle?                                                                                                                                                                                              | 1 |
|    | (iii) How much area of the tile is black?                                                                                                                                                                                           | 2 |
|    | OR                                                                                                                                                                                                                                  |   |
|    | Find the length of the altitude drawn to the side measuring 8cm in the triangle.                                                                                                                                                    |   |
| 37 | Two friends Rita and Priya simplified some expression during their revision                                                                                                                                                         |   |
|    | hour and tried to explain to each other. Rita explains the simplification of $\frac{1}{\sqrt{2}}$                                                                                                                                   |   |
|    | $3\sqrt{45} - \sqrt{125} + \sqrt{45}$ and Priva was finding the value of $\frac{1}{1+\sqrt{2}}$ after rationalizing                                                                                                                 |   |
|    | and by putting $\sqrt{2} = 1.414$                                                                                                                                                                                                   | 1 |
|    | (i) What is the rationalising factor of the denominator of $\frac{1}{1+\sqrt{2}}$ ?                                                                                                                                                 | - |
|    | (ii) What is the product of $3\sqrt{45}$ and $\sqrt{45}$ ?                                                                                                                                                                          | 1 |
|    | (iii) Simplify $3\sqrt{45} - \sqrt{125} + \sqrt{45}$                                                                                                                                                                                | 2 |
|    | OR                                                                                                                                                                                                                                  | 2 |
|    | Simplify and find the value of $\frac{1}{1+\sqrt{2}}$                                                                                                                                                                               |   |

