INDIAN SCHOOL SOHAR
TERM I EXAMINATION (2022-23)
MATHEMATICS (CODE -041)

CLASS: XI
DATE: 24/9/22

No. of printed pages: 6

MAX. MARKS: 80
TIME: 3 Hrs.

General Instructions:

- This question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are some internal choices in some questions.
- Section A has $\mathbf{2 0}$ MCQ's of 1 mark each.
- Section B has 5 very Short Answer (V S A) - type questions of 2 marks each .
- Section C has 6 Short Answer (S A) - type questions of 3 marks each.
- Section D has 4 Long Answer (L A) - type questions of 5 marks each
- Section E has 3 source based / case based / passage based / integrated units of assessment (4 marks each) with sub parts

SECTION -A

(Multiple Choice Questions)
Each question carries 1 mark

1.	Given that x, y and b are real numbers such that $\mathrm{x}<\mathrm{y}, \mathrm{b}<0$, then (a) $x b<y b$ (b) $x b>y b$ (c) $\mathrm{xb} \leq \mathrm{yb}$ (d) $\frac{x}{b}=\frac{y}{b}$	1
2.	The solutions of $5 x-1<24$ and $5 x+1>-24$ is (a) $(4,5)$ (b) $(-5,-4)$ (c) $(-5,5)$ (d) $(-5,4)$	1
3.	The conjugate of the complex number is $\frac{1}{i-2}$. Then the complex number is (a) $\frac{1}{i+2}$ (b) $\frac{-1}{i+2}$ (c) $\frac{-1}{i-2}$ (d) $\frac{1}{i-2}$	1
4.	The value of $\mathrm{i}^{\mathrm{n}}+\mathrm{i}^{\mathrm{n}+1}+\mathrm{i}^{\mathrm{n}+2}+\mathrm{i}^{\mathrm{n}+3}$ is (a) 3 (b) $\quad 2 \mathrm{i}$ (c) -1 (d) 0	1
5.	The domain of the function f defined by $f(x)=\frac{1}{\sqrt{\|x\|-x}}$ is (a) R (b) R^{+} (c) R^{-} (d) $R-\{0\}$	1
6.	The domain of the function f given by $\mathrm{f}(\mathrm{x})=\frac{x^{2}+2 x+1}{x^{2}-x-6}$ (a) $R-\{3,-2\}$ (b) $R-\{-3,2\}$ (c) $\quad \mathrm{R}-[3,2]$ (d) $R-(3,2)$	1

7.	The number of students who take both the subjects Mathematics and Chemistry is 70. This represents 10% of the enrollment in Mathematics and 14% of the enrollment in Chemistry. The number of students at least one of these two subjects is (a) 1120 (b) 1130 (c) 1100 (d) 1200	1
8.	Let A and B be subsets of the universal set N, the set of natural numbers. Then $A^{\prime} \cup\left[(A \cap B) \cup B^{\prime}\right]$ is (a) A (b) A^{\prime} (c) B (d) N	1
9.	The value of $\sin 765^{\circ}$ is (a) $\frac{1}{2}$ (b) $\frac{\sqrt{3}}{2}$ (c) $-\frac{1}{\sqrt{2}}$ (d) $\frac{1}{\sqrt{2}}$	1
10.	The value of $\sin \left(45^{\circ}+A\right)-\cos \left(45^{\circ}-A\right)$ is (a) 1 (b) 0 (c) $\sqrt{2} \cos \mathrm{~A}$ (d) $\sqrt{2} \sin \mathrm{~A}$	1
11.	If $\tan \alpha=\frac{1}{2}$ and $\tan \beta=\frac{1}{3}$, then the value of $\alpha+\beta$ is (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (d) π (d) 0	1
12.	If $\sin \theta+\cos \theta=1$, then the value of $\sin 2 \theta$ is equal to (a) 0 (b) 1 (c) $\frac{1}{2}$ (d) $\frac{-1}{2}$	1
13.	If $\tan \theta=3$ and θ lies in the third quadrant then the value of $\sin \theta$ is (a) $\frac{1}{\sqrt{10}}$ (b) $\frac{-1}{\sqrt{10}}$ (c) $\frac{-3}{\sqrt{10}}$ (d) $\frac{3}{\sqrt{10}}$	1
14.	What is the greatest value of $\sin x \cdot \cos x$? (a) $\frac{1}{\sqrt{2}}$ (b) 1 (c) $\frac{-1}{2}$ (d) $\frac{1}{2}$	1
15.	Find the length of an arc of a circle of radius 5 cm subtending a central angle measuring 15°. (a) $\frac{5 \pi}{12}$ (b) $\frac{120}{84}$ (c) $\frac{12 \pi}{5}$ (d) 75 cm	1
16.	If the arcs of same lengths in two circles subtend central angles 30° and 80°, find the ratio of their radii. (a) $3: 8$ (b) $8: 3$ (c) $3: 5$ (d) $9: 64$	1

17.	What is the range of the function $f(x)=7-\|x+1\|$? (a) $(-\infty,-7]$ (b) $\quad(\infty, 7]$ (c) $(-\infty, 7)$ (d) $(-\infty, 7]$	1
18.	Let $n(U)=700, n(A)=200, n(B)=300, n(A \cap B)=100$. Find $n\left(A^{\prime} \cap B^{\prime}\right)$ (a) 300 (b) 400 (c) 200 (d) 100	1
19.	Simplify $\left(\frac{1+i}{1-i}\right)^{200}$. (a) 0 (b) -1 (c) 1 (d) i	1
20.	Solve $\|x-9\|<2$ for x. (a) $x<11$ (b) $7<x<11$ (c) $x>11$ (d) $-7 \leq x \leq 11$	1
	SECTION B This section comprises of very short answer type questions (VSA)of 2 marks each	
21	If $\tan (\mathrm{A}+\mathrm{B})=\mathrm{p}, \tan (\mathrm{A}-\mathrm{B})=\mathrm{q}$, then show that $\tan 2 \mathrm{~A}=\frac{p+q}{1-p q}$. OR In the triangle $A B C, A B=6 \mathrm{~cm}$ and the angle $\mathrm{BAC}=\frac{\pi}{3}, \mathrm{BD}$ is the arc of a circle, centre A and $B C$ is the tangent to the circle. Find the area of the shaded region.	2
22	The adjacent image is the representation of the function $f(x)=(x+1)(x-2)$. Draw the graph of $\mathrm{f}(\mathrm{x})=\|(x+1)(x-2)\|$.	2
23	Find the value of $x^{3}-3 x^{2}-8 x+15$ when $\mathrm{x}=3+\mathrm{i}$ OR Show that $(2+i \sqrt{3})^{10}+(2-i \sqrt{3})^{10}$ is real.	2
24	The cost of manufacturing x telephones by TATA given by $C=3000+200 x$, and the revenue from selling these is given by $R=300 x$. How many telephones must be produced and sold in order to realize a profit ?	2
25	If A and B are two sets so that $\mathrm{n}(\mathrm{B}-\mathrm{A})=2(\mathrm{n}(\mathrm{A}-\mathrm{B}))=4(\mathrm{n}(A \cap B))$ and if $\mathrm{n}(A \cup B)=14$, find $\mathrm{n}(\mathrm{A})$	2

SECTION C

This section comprises of very short answer type questions (SA) of $\mathbf{3}$ marks each

26	Prove that $\frac{\sin \theta+\sin 2 \theta}{1+\cos \theta+\cos 2 \theta}=\tan \theta$.	3
27	If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}1+x & -1 \leq x<0 \\ x^{2}-1 & 0<x<2 \\ 2 x & x \geq 2\end{array}\right\}$ find $\mathrm{f}(3), \mathrm{f}(-2)$ and $\mathrm{f}\left(\frac{1}{2}\right)$ OR Redefine $f(x)=\|x-1\|+\|1+x\|,-2 \leq x \leq 2$.	3
28	Verify the following by Venn diagram $(A \cup B)^{\prime}=\left(A^{\prime} \cap B^{\prime}\right)$. OR Verify the following by Venn diagram $A-(B \cup C)=(A-B) \cap(A-C)$.	3
29	If α and β are different complex numbers with $\|\beta\|=1$, then find $\left\|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right\|$. OR If $(\mathrm{x}+\mathrm{iy})^{3}=\mathrm{a}+\mathrm{ib}$, then show that $\frac{a}{x}+\frac{b}{y}=4\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)$	3
30	Solve the system of linear inequalities $\frac{x}{2 x+1} \geq \frac{1}{4}, \frac{6 x}{4 x-1}<\frac{1}{2}$ and represent the solutions on the number line.	3
31	Find the real part of the complex number $(1+\cos \theta-i \sin \theta)^{-1}$	3

SECTION D

(This section comprises of long answer - type questions (L A) of 5 marks each)

32	In a senior classes of all 29 students take one or more of physics, chemistry and biology. The headmaster has informed that 15 take biology, 18 take physics and 15 take chemistry. 10 take biology and chemistry, 5 take physics and chemistry and 7 take biology and physics. How many students take all three subjects?	5
33	Find the domain and range of the following functions: a) $f(x)=\sqrt{16-x^{2}}$ b) $f(x)=\frac{x^{2}}{1+x^{2}}$ OR Draw the graph of the following functions in the interval [-3, 3] a) $f: R \rightarrow R$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$ (polynomial function) b) $f: R \rightarrow R$ defined by $\mathrm{f}(\mathrm{x})=[\mathrm{x}]$ (greatest integer function) c) $f: R \rightarrow R$ defined by $\mathrm{f}(\mathrm{x})=\|x\|$ (modulus function)	5

34	If $x \cos \theta=y \cos \left(\theta+\frac{2 \pi}{3}\right)=z \cos \left(\theta+\frac{4 \pi}{3}\right)$, then find the value of $\mathrm{xy}+\mathrm{yz}+\mathrm{zx}$. OR Prove that $\cos ^{2} x+\cos ^{2}\left(x+\frac{\pi}{3}\right)+\cos ^{2}\left(x-\frac{\pi}{3}\right)=\frac{3}{2}$.	5
35	Find the value of the real numbers x and y, if the complex number $(2+i) x+(1-i) y+2 i-3$ and $x+(-1+2 i) y+1+i$ are equal.	5
	SECTION E (This section comprises of 3 case study /passage based questions 4 marks each with two subparts. First two case study questions have three sub parts (i) (ii) (iii) of marks $1,1,2$ respectively. The third case study question has two subparts of $\mathbf{2}$ marks each)	
36	During 2 week period, Reshma took her umbrella with her on 8 days. It rained on 9 days, and Reshma took her umbrella on five of the days when it rained	
	a) Display the above situation on a Venn diagram	2
	b) Hence find the numbers of days that i) Reshma did not take her umbrella and it rained ii) Reshma did not take her umbrella and it did not rain. OR Identify the following values related with this situation a) $n(U)$ b) $n(A \cup B)$ c) $n(A \cap B)$ d) $n[(A-B) \cup(B-A)]$	2

