TERM I EXAMINATION (2022-23)
MATHEMATICS (CODE -041)

CLASS: XII
DATE: 26/9/22

MAX. MARKS: 80
TIME: 3 Hrs.

General Instructions:

1. This question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 20 Multiple Choice Questions of 1 mark each.
3. Section B has 5 Very Short Answer (VSA) type questions of 2 marks each.
4. Section C has 6 Short Answer (SA) type questions of 3 marks each.
5. Section D has 4 Long Answer (LA) type questions of 5 marks each.
6. Section E has 3 Case based questions of 4 marks each with sub parts.

SECTION - A(This Section comprises of 20 multiple choice questions of 1 mark each)		
1.	If a relation R in R is defined as $\mathbf{a} \mathbf{R} \mathbf{b}$ if $a \geq b$. Then R is a) an equivalence relation b) reflexive, transitive but not symmetric c) symmetric, transitive but not reflexive d) neither transitive nor reflexive but symmetric	MARKS 1
2.	Let N be the set of natural numbers and the function $f: N \rightarrow N$ be defined by $\mathrm{f}(\mathrm{n})=5 \mathrm{n}-3 \forall \mathrm{n} \in \mathrm{N}$. Then f is a) surjective b) one-one and onto c) injective d) f is not defined	1
3.	The value of $\cos ^{-1}\left(\cos \frac{3 \pi}{2}\right)$ is equal to a) $\frac{\pi}{2}$ b) $\frac{3 \pi}{2}$ c) $\frac{5 \pi}{2}$ d) $\frac{7 \pi}{2}$	1
4.	Find the principal value of $\cot ^{-1}\left(\frac{-1}{\sqrt{3}}\right)$. a) $\frac{\pi}{6}$ b) $\frac{\pi}{3}$ c) $\frac{2 \pi}{3}$ d) $\frac{-\pi}{3}$	1
5.	If A and B are matrices of same order, then ($A B^{\prime}-B A^{\prime}$) is a a) skew symmetric matrix b) null matrix c) symmetric matrix d) unit matrix	1
6.	If $\left\|\begin{array}{cc}2 x & 5 \\ 6 & x\end{array}\right\|=\left\|\begin{array}{cc}2 & -1 \\ 10 & 5\end{array}\right\|$ then x equal to a) $\sqrt{5}$ b) 5 c) $\frac{1}{5}$ d) ± 5	1

7.	Differentiation of x^{x} with respect to $(x \log x+1)$ is a) $1+\log x$ b) $x \log x+x^{x}$ c) $x \log x+1$ d) x^{x}	1
8.	If $x=a t^{2}$ and $y=2$ at then $\frac{d^{2} y}{d x^{2}}$ is a) $\frac{-1}{2 a t^{3}}$ b) $-2 a t^{3}$ (c) $\frac{-1}{t^{2}}$ d) t^{2}	1
9	Evaluate $\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x$ a) $-\tan x+\cot x+c$ b) $\cot x+\tan x+c$ c) $\tan ^{3} x+\cot x+c$ d) $\tan x-\cot x+c$	1
10	The interval in which the function $f(x)=2 x^{3}-15 x^{2}+36 x+1$ is decreasing is: a) $(3, \infty)$ b) $(-\infty, 2)$ c) $(2,3)$ d) $(-\infty, 2) \cup(3, \infty)$	1
11	Let $A=\{a, b, c\}$ and the relation R be defined on A as follows: $R=\{(a, a),(b, c),(a$, b)\}. Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive. a) $\{(b, b),(c, c),(a, c)\}$ b) $\{(b, b),(a, c)\}$ c) $\{(a, c)\}$ d) $(c, c),(a, c)\}$	1
12	Evaluate : $\tan ^{-1}\left(\tan \frac{5 \pi}{6}\right)$ a) $\frac{\pi}{6}$ b) $\frac{-\pi}{6}$ c) $\frac{-\pi}{3}$ d) $\frac{\pi}{3}$	1
13	The values of a, b, c, and d from the following are: $\left[\begin{array}{cc} 2 a+b & a-2 b \\ 5 c-d & 4 c+3 d \end{array}\right]=\left[\begin{array}{cc} 4 & -3 \\ 11 & 24 \end{array}\right]$ a) $a=2, b=1, c=3, d=4$ b) $a=1, b=-2, c=3, d=4$ c) $a=1, b=2, c=4, d=3$ d) $a=1, b=2, c=3, d=4$	1
14	If $\mathrm{x}^{\mathrm{y}}=\mathrm{e}^{\mathrm{x}-\mathrm{y}}$ then $\frac{d y}{d x}$ is equal to a) $\frac{\log x}{1+\log x}$ b) $\frac{\log x}{(1-\log x)^{2}}$ c) $\frac{\log x}{(1+\log x)^{2}}$ d) $\frac{x}{(1+\log x)^{2}}$	1
15	If $y=a \sin p x+b \cos p x$, then $\frac{d^{2} y}{d x^{2}}$ is equal to a) $-p^{2} y$ b) $p y$ c) $p^{2} y$ d) -py	1

16	The length x of a rectangle is decreasing at the rate of $5 \mathrm{~cm} / \mathrm{sec}$ and the width y is increasing at the rate of $4 \mathrm{~cm} / \mathrm{sec}$. When $x=8 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rate of change of the perimeter. a) $-3 \mathrm{~cm} / \mathrm{sec}$ b) $-2 \mathrm{~cm} / \mathrm{sec}$ c) $14 \mathrm{~cm} / \mathrm{sec}$ d) $9 \mathrm{~cm} / \mathrm{sec}$	1
17	$\int x e^{\left(1+x^{2}\right)} d x$ is equal to a) $\frac{e^{\left(1+x^{2}\right)}}{2}+\mathrm{c}$ b) $e^{\left(1+x^{2}\right)}+c$ c) $x e^{\left(1+x^{2}\right)}+c$ d) $\frac{\left(1+x^{2}\right)}{2}+c$	1
18	$\int e^{x}\left(1-\cot x+\operatorname{cosec}^{2} x\right) d x$ is equal to a) $e^{x}(\cot x)+c$ b) $e^{x}\left(\operatorname{cosec}^{2} x\right)+c$ c) $e^{x}\left(-\operatorname{cosec}^{2} x\right)+c$ d) $e^{x}(1-\cot x)+c$	1
19	Evaluate: $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)+\operatorname{cosec}^{-1}\left(\frac{2}{\sqrt{3}}\right)+\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ a) $\frac{3 \pi}{2}$ b) $\frac{3 \pi}{4}$ c) 0 d) $\frac{\pi}{4}$	1
20	Corner points of the feasible region determined by the system of linear constraints are $(0,2),(1,1)$ and $(2,0)$. Let $Z=p x+q y(p>0, q>0)$, then the condition on p and q so that minimum z occurs at $(2,0)$ and $(1,1)$ is: a) $p=2 q$ b) $p=\frac{q}{2}$ c) $p=3 q$ d) $p=q$	1
	SECTION B (This section comprises of very short answer type questions (VSA) of 2 marks each)	
21	Find: $\int \sin ^{-1}(2 x) d x$	2
22	Find: $\int \frac{\cos 2 x}{(\sin x+\cos x)^{2}} d x$	2
23	Let $f: N \rightarrow N$ be defined by $\mathrm{f}(\mathrm{n})=\left\{\begin{array}{l} \frac{n+1}{2}, n \text { is odd } \\ \frac{n}{2}, n \text { is even } \end{array}\right.$ Check the injectivity and surjectivity of the function. OR Check whether the relation R in R defined by $R=\left\{(a, b)\right.$: $\left.a \leq b^{3}\right\}$ is reflexive, symmetric or transitive.	2
24	If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$, show that $A^{2}-5 A+7 I=0$. Hence find A^{-1}.	2

25	Find the value of the constant k so that the function given below is continuous at $\mathrm{x}=0$. $\mathrm{F}(\mathrm{x})=\left\{\begin{array}{c} \frac{1-\cos 2 x}{4 x^{2}}, x \neq 0 \\ k, x=0 \end{array}\right.$ OR If $\mathrm{y}=3 \cos (\log \mathrm{x})+4 \sin (\log \mathrm{x})$, then show that: $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$	2
	SECTION C (This section comprises of short answer type questions (SA) of 3 marks each)	
26	Differentiate the following function w.r.t. x : $y=(\sin x)^{x}+\sin ^{-1} \sqrt{x}$ OR If $y=e^{x \sin ^{2} x}+(\sin x)^{x}$, find $\frac{d y}{d x}$	3
27	Find the area of the ellipse $x^{2}+9 y^{2}=36$ using integration. OR Find the area of the region bounded by the curve $y^{2}=8 x$ and the line $x=2$.	3
28	The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.	3
29	Find the equation of the line joining $A(1,3)$ and $B(0,0)$ using determinants and find k if $D(k, 0)$ is a point such that area of triangle $A B D$ is $3 s q$ units. OR Using cofactors of the elements of the determinant $\left\|\begin{array}{ccc} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{array}\right\|$ Evaluate: $a_{11} A_{31}+a_{12} A_{32}+a_{13} A_{33}$	3
30	Find $\int \frac{x^{3}}{x^{4}+3 x^{2}+2} d x$	3
31	Solve the following linear propramming problem graphically. Maximize $Z=x+2 y$ Subject to constraints; $\begin{gathered} x+2 y \geq 100 \\ 2 x-y \leq 0 \\ 2 x+y \leq 200 \\ x, y \geq 0 \end{gathered}$	3

SECTION D (This section comprises of long answer type questions (LA) of 5 marks each)		
32	Let Z be the set of all integers and R be the relation on Z defined as $R=\{(a, b): a, b \in Z$, and $(a-b)$ is divisible by 5. $\}$ Prove that R is an equivalence relation.	5
33	Solve the following system of equations by matrix method, where $x \neq 0, y \neq 0$, $\begin{aligned} & z \neq 0 \\ & \frac{2}{x}-\frac{3}{y}+\frac{3}{z}=10 \\ & \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=10 \\ & \frac{3}{x}-\frac{1}{y}+\frac{2}{z}=13 \end{aligned}$	5
34	Find: $\int \frac{\sin x}{\sin ^{3} x+\cos ^{3} x} d x$ OR Find: $\int \frac{1}{\cos ^{4} x+\sin ^{4} x} d x$	5
35	Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is $\frac{4 r}{3}$. OR A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m . Find the dimensions of the window to admit maximum light through the whole opening.	5
SECTION E (This section comprises of case study based questions of 4 marks each)		
36	Geeta bought a wire of length 28 m which is to be cut in to two pieces. One of the pieces is to be made into a square and the other into a circle as shown in the figure.	
	i) Find the area of the circle in terms of x	1
	ii) Find the area of the square in terms of x.	1
	iii) Find the length of the wire bent into the form of square. OR iii) Find the length of the wire bent into the form of circle.	2

37	Mohan wants to donate a rectangular plot of land for a hospital in his village. When he was asked to give dimensions of the plot, he told that if length is decreased by 10 m and breadth is decreased by 20 m , then its area will decrease by $5300 \mathrm{~m}^{2}$, but if its length is decreased by 50 m and breadth is increased by 50 m , then its area will remain same. \square Answer the following questions:	
	i) Write the equation in terms of X and Y using matrix equation.	1
	ii) Find the value of x.	1
	iii) Find the area of the rectangular field. OR iii)Find the perimeter of the rectangular field.	2
38	$P(x)=-3 x^{2}+84 x+1500$ is the total profit function of a company, where x is the production of the company.	
	i) What will be the production when the profit is maximum? Also find the maximum profit.	2
	ii) Check in which interval the profit is : a)strictly decreasing b) strictly increasing	2

