

INDIAN SCHOOL SOHAR PERIODIC TEST 1 (2022-23) MATHEMATICS (041)

CLASS: X MAX. MARKS: 20 DATE: 18/05/22 TIME: 45 MINUTES

General Instructions:

- 1. The question paper contains 11 questions. All questions are compulsory.
- 2. Section A comprises of 5 questions of 1 mark each. Section B comprises of 3 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each.

	1		

S	_	\sim		$\hat{}$	N.	Λ
- 3	г,		ш	u	ı١	ч

1	The graph of a polynomial $P(x)$ cuts the x-axis at 2 points and touches it at 2 other points. The number of zeroes of $P(x)$ is				
	a) 1 b) 2 c) 4 d) 5				
2	Given that HCF (156, 78) = 78, LCM (156,78) is				
	a) 156 b) 78 c) 156 × 78 d) 156 × 2				
3	If the HCF of 65 and 117 is expressible in the form 65m – 117, then the value of m is				
	a) 3 b) 2 c) 4 d) 1	1			
4	If two positive integers a and b are written as $a = x^2y^2$ and $b = x^3y$, x, y are p numbers, then LCM (a, b) is : a) x^3y^3 b) xy^2 c) x^2y^2 d) x^3y^2	orime 1			
5	If α and β are the zeroes of the polynomial $p(x) = 4x^2 + 4x - 1$, then $\frac{1}{\alpha} + \frac{1}{\beta}$ is a) -4 b) 4 c) $\frac{-1}{\alpha}$ d) $\frac{1}{\alpha}$	1			

SECTION B

6	If $x - 1$ is a factor of the polynomial $p(x) = x^3 + ax^2 + 2b$ and $a + b = 4$, then find the values of a and b	2
7	If α and β are the zeroes of the quadratic polynomial p(x) = x^2 – 5x + 6, find a quadratic polynomial whose zeroes are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.	2
	OR _	
	Find the zeroes of the polynomial $4\sqrt{3}x^2 + 5x - 2\sqrt{3}$.	
8	Show that 8 ⁿ , when n is a natural number cannot end with the digit 0 for any natural number 'n.	2

SECTION C

9	Find the zeroes of the quadratic polynomial $3x^2 - 4 - x$ and verify the relationship	3
	between the zeroes and the coefficients.	
10	Find the smallest number which when divided by 161, 207 and 184 leaves remainder 21	3
	in each case.	
	OR	
	Two tankers contain 850 liters and 680 liters of petrol. Find the maximum capacity of a	
	container which can measure the petrol of each tanker in the exact number of times.	
11	Prove that $3 + \sqrt{2}$ is an irrational number.	3