INDIAN SCHOOL SOHAR

SET A

UNIT TEST I (2022-23) MATHEMATICS (CODE -041)

CLASS: XII DATE: 23/05/22

MAX. MARKS: 20 TIME: 45 MINUTES

General Instructions:

1. This question paper contains three sections – A, B and C. Each part is compulsory.

- 2 Section A has 5 Multiple Choice Questions of 1 mark each.
- 3. Section B has 3 short answer type questions of 2 marks each.
- 4. Section C has 3 long answer type questions of 3 marks each.
- 5. There is an internal choice in some of the questions.

SECTION – A				
1.	 Which of the following function from Z into Z bijection? (a) f(x) = x³ (b) f(x) = x + 2 (c) f(x) = 2x + 1 (d) f(x) = x² + 1 OR If the set A contains 7 elements and the set B contains 8 elements, then number of one-one and onto mappings from A to B is (a) 24 (b) 120 (c) 0 (d) 7 	MARKS 1		
2.	Find the principal value of $\tan^{-1}\sqrt{3} - \sec^{-1}$ (-2). a) $\frac{\pi}{3}$ b) $-\frac{\pi}{6}$ c) $-\frac{\pi}{3}$ d) π	1		
3.	If $A = (a_{ij}) = \begin{pmatrix} 2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2 \end{pmatrix}$ and $B = (b_{ij}) = \begin{pmatrix} 2 & 1 & -1 \\ -3 & 4 & 4 \\ 1 & 5 & 2 \end{pmatrix}$, then find $a_{22} + b_{21}$. a) -3 b) 2 c) -1 d) 1	1		
4.	If A is any square matrix of order 3×3 such that IAI = 2, then ladjAI is equal to a) 4 b) 2 c) 8 d) 9	1		
5.	If $\begin{vmatrix} 2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1 \end{vmatrix} + 3 = 0$, then the value of x is a) 0 b) -1 c) 2 d) 1	1		

SECTION – B					
6.	Find the value of k so that the points (1,-5), (-4,5) and (k,7) are collinear.	2			
7.	What is the principal value of $\cos^{-1}\left(\cos\frac{2\pi}{3}\right) + \sin^{-1}\left(\sin\frac{2\pi}{3}\right)$?	2			
	OR				
	Write the principal value of				
	$\cos^{-1}\left(\frac{1}{2}\right) - 2\sin^{-1}\left(-\frac{1}{2}\right).$				
8.	If $2\begin{bmatrix} x & 5\\ 7 & y-3 \end{bmatrix} + \begin{bmatrix} 3 & 4\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 14\\ 15 & 14 \end{bmatrix}$ then find the values of x and y.	2			
SECTION – C					
9.	Show that the function f : R \rightarrow R defined by f (x) = x ² for all x \in R, is neither	3			
	one-one nor onto.				
	OR				
	Show that the relation R in the set R of real numbers, defined as				
	$R = \{(a, b) : a - b \text{ is a multiple of 3}\}, \text{ is an equivalence relation.}$				
10.	If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 - 5A + 7I = O$. Hence find A^{-1} .	3			
11.	Using matrices, solve the following system of linear equations:	3			
	x + y + z = 4				
	2x + y - 3z = -9				
	2x - y + z = -1				

-----000------

MATHS UNIT TEST -2022-23 SCORING KEY STD XII

1)	b	1
	OR	
	c	
2)	C	1
3)	d	1
4)	а	1
5)	b	1
6)	K=-5	2
7)	$\cos^{-1}\left(\cos\frac{2\pi}{3}\right) + \sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \cos^{-1}\left(\cos\frac{2\pi}{3}\right) + \sin^{-1}\left(\sin\left(\pi - \frac{\pi}{3}\right)\right)$ $= \cos^{-1}\left(\cos\frac{2\pi}{3}\right) + \sin^{-1}\left(\sin\frac{\pi}{3}\right)$	2
	$=\frac{2\pi}{3}+\frac{\pi}{3}$	
	= #	
	Or	
	We have, $\cos^{-1}\left(\frac{1}{2}\right) = \cos^{-1}\left(\cos\frac{\pi}{3}\right)$	
	$=\frac{\pi}{2}$	
	Also $\sin^{-1}\left(-\frac{1}{2}\right) = \sin^{-1}\left(-\sin\frac{\pi}{6}\right)$	
	$=\sin^{-1}\left(\sin\left(-\frac{\pi}{6}\right)\right)$	
	$=-\frac{\pi}{6}$	
	$\therefore \cos^{-1}\left(\frac{1}{2}\right) - 2\sin^{-1}\left(-\frac{1}{2}\right) = \frac{\pi}{3} - 2\left(-\frac{\pi}{6}\right) \\ = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$	
8)	X= 2, y = 9	2
9)	Proper steps	3
10)	1/7 (2 -1)	3
11)	$\frac{1}{X} = A^{-1}B$	2
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \cdot \frac{1}{14} \begin{bmatrix} 2 & 2 & 4 \\ 8 & 1 & -5 \\ 4 & -3 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ -9 \\ -1 \end{bmatrix}$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 8 + (-18) + (-4) \\ 32 + (-9) + 5 \\ 16 + 27 + (-1) \end{bmatrix}$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{14} \begin{bmatrix} -14 \\ 28 \\ 42 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$	5
		1

MATHS UNIT TEST -2022-23

STD XII

BLUE PRINT

Sl.no	CHAPTER	1 MARK	2 MARKS	3 MARKS	Total
1	Relation and	1		1	2(4 marks)
	Function				
2	Inverse Tri	1	1		2(3marks)
3	Matrices	1+1	1	1	4 (7 marks)
4	Determinants	1	1	1	3(6 marks)
					11(20 marks)