CLASS: XII
MAX. MARKS: $\mathbf{2 0}$
DATE: 23/05/22
TIME: 45 MINUTES
General Instructions:

1. This question paper contains three sections $-A, B$ and C. Each part is compulsory.

2 Section - A has 5 Multiple Choice Questions of 1 mark each.
3. Section - B has 3 short answer type questions of 2 marks each.
4. Section - C has 3 long answer type questions of 3 marks each.
5. There is an internal choice in some of the questions.

SECTION - A		
1.	Which of the following function from Z into Z bijection? (a) $f(x)=x^{3}$ (b) $f(x)=x+2$ (c) $f(x)=2 x+1$ (d) $f(x)=x^{2}+1$ OR If the set A contains 7 elements and the set B contains 8 elements, then number of one-one and onto mappings from A to B is (a) 24 (b) 120 (c) 0 (d) 7	MARKS 1
2.	Find the principal value of $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$. a) $\frac{\pi}{3}$ b) $-\frac{\pi}{6}$ c) $-\frac{\pi}{3}$ d) π	1
3.	If $A=\left(a_{i j}\right)=\left(\begin{array}{ccc}2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2\end{array}\right)$ and $B=\left(b_{i j}\right)=\left(\begin{array}{ccc}2 & 1 & -1 \\ -3 & 4 & 4 \\ 1 & 5 & 2\end{array}\right)$, then find $a_{22}+b_{21}$. a) -3 b) 2 c) -1 d) 1	1
4.	If A is any square matrix of order 3×3 such that $I A I=2$, then IadjAI is equal to a) 4 b) 2 c) 8 d) 9	1
5.	If $\left\|\begin{array}{lll}2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1\end{array}\right\|+3=0$, then the value of x is a) 0 b) -1 c) 2 d) 1	1

SECTION - B		
6.	Find the value of k so that the points (1,-5), ($-4,5$) and ($k, 7$) are collinear.	2
7.	What is the principal value of $\cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)+\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$? OR Write the principal value of $\cos ^{-1}\left(\frac{1}{2}\right)-2 \sin ^{-1}\left(-\frac{1}{2}\right)$	2
8.	If $2\left[\begin{array}{cc}x & 5 \\ 7 & y-3\end{array}\right]+\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}7 & 14 \\ 15 & 14\end{array}\right]$ then find the values of x and y .	2
SECTION - C		
9.	Show that the function $f: R \rightarrow R$ defined by $f(x)=x^{2}$ for all $x \in R$, is neither one-one nor onto. OR Show that the relation R in the set R of real numbers, defined as $R=\{(a, b):\|a-b\|$ is a multiple of 3$\}$, is an equivalence relation.	3
10.	If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$, show that $A^{2}-5 A+7 I=O$. Hence find A^{-1}.	3
11.	Using matrices, solve the following system of linear equations: $\begin{aligned} & x+y+z=4 \\ & 2 x+y-3 z=-9 \\ & 2 x-y+z=-1 \end{aligned}$	3

1)	$\begin{aligned} & \mathrm{b} \\ & \mathrm{OR} \\ & \mathrm{c} \end{aligned}$	1
2)	c	1
3)	d	1
4)	a	1
5)	b	1
6)	$\mathrm{K}=-5$	2
7)	$\begin{aligned} \cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)+\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right) & =\cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)+\sin ^{-1}\left(\sin \left(\pi-\frac{\pi}{3}\right)\right) \\ & =\cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)+\sin ^{-1}\left(\sin \frac{\pi}{3}\right) \\ & =\frac{2 \pi}{3}+\frac{\pi}{3} \end{aligned}$ = \# Or We have, $\cos ^{-1}\left(\frac{1}{2}\right)=\cos ^{-1}\left(\cos \frac{\pi}{3}\right)$ $=\frac{\pi}{3}$ $\begin{aligned} & \text { Also } \begin{aligned} \sin ^{-1}\left(-\frac{1}{2}\right) & =\sin ^{-1}\left(-\sin \frac{\pi}{6}\right) \\ & =\sin ^{-1}\left(\sin \left(-\frac{\pi}{6}\right)\right) \\ & =-\frac{\pi}{6} \end{aligned} \\ & \therefore \quad \cos ^{-1}\left(\frac{1}{2}\right)-2 \end{aligned}$ Also	2
8)	$\mathrm{X}=2, \mathrm{y}=9$	2
9)	Proper steps	3
10)	$\begin{array}{rc} \hline 1 / 7(2 & -1) \\ 1 & 3 \end{array}$	3
11)	$\begin{aligned} & X=A^{-1} B \\ & {\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\cdot \frac{1}{14}\left[\begin{array}{ccc} 2 & 2 & 4 \\ 8 & 1 & -5 \\ 4 & -3 & 1 \end{array}\right]\left[\begin{array}{c} 4 \\ -9 \\ -1 \end{array}\right]} \\ & {\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\frac{1}{14}\left[\begin{array}{cc} 8+(-18)+(-4) \\ 32+(-9)+5 \\ 16+ & 27 \\ +(-1) \end{array}\right]} \\ & {\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\frac{1}{14}\left[\begin{array}{c} -14 \\ 28 \\ 42 \end{array}\right]=\left[\begin{array}{c} -1 \\ 2 \\ 3 \end{array}\right]} \end{aligned}$	3

MATHS UNIT TEST -2022-23
STD XII
BLUE PRINT

SI.no	CHAPTER	1 MARK	2 MARKS	3 MARKS	Total
1	Relation and Function	1		1	2(4 marks)
2	Inverse Tri	1	1		2(3marks)
3	Matrices	$1+1$	1	1	4 (7 marks $)$
4	Determinants	1	1	1	$3(6$ marks)
					$11(20$ marks $)$

