MAX. MARKS: 40
TIME ALLOWED: 2 HOURS

General Instructions:

1. The question paper contains three sections - A , B and C . Each part is compulsory
2. Section A has 6 Short Answer Type (SA1) questions of 2 marks each
3. Section B has 4 Short Answer Type (SA2) questions of 3 marks each
4. Section C has 4 Short Answer Type (LA) questions of 4 marks each
5. There is an internal choice in some of the questions
6. Q 14 is a case based problem having 2 sub parts of 2 marks each

SECTION A		
1	Evaluate $\int \frac{e^{2 x}-1}{e^{2 x}+1} d x \quad\left[\right.$ OR] Evaluate $\int \frac{\cos x-\sin x}{1+\sin 2 x} d x$	2
2	Solve $\frac{d y}{d x}=\mathrm{y} \tan \mathrm{x}: \mathrm{y}=1$ and $\mathrm{x}=0$	2
3	If $\vec{a}=2 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}, \vec{b}=-\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ and $\vec{c}=3 \hat{\imath}+\hat{\jmath}$ are such that $\vec{a}+\alpha \vec{b}$ is perpendicular to \vec{c}, then find the value of α	2
4	Show that the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(-1,-2,1),(1,2,5)$	2
5	A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is six. Find the probability that it is actually six	2
6	A die is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?	2
	SECTION B	
7	Evaluate $\int e^{2 x} \sin x d x$	3
8	Solve ; $x d y-y d x=\sqrt{x^{2}+y^{2}} \mathrm{dx}$ [OR\| Solve ; $\frac{d y}{d x}-3 y \cot x=\sin 2 x ; y=2$ when $x=\frac{\pi}{2}$	3
9	If $\hat{\imath}+\hat{\jmath}+\hat{k} \cdot 2 \hat{\imath}+5 \hat{\jmath}, 3 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}$ and $\hat{\imath}-6 \hat{\jmath}-\hat{k}$ are the position vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively, then find the angle between $\overrightarrow{A B}$ and $\overrightarrow{C D}$. Deduce that $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are collinear	3

10	Find the equation of the plane passing through the intersection of the planes $x+y+z=6$ and $2 x$ $+3 y+4 z-5=0$, and the point ($1,1,1$) [OR] Find the coordinates of the point where the line through ($3,-4,-5$) and ($23,-1$) crosses the plane $2 x+y+z=7$	3
	SECTION C	
11	Evaluate $\int_{-1}^{\frac{3}{2}}\|x \sin (\pi x)\| d x$	4
12	Find the area of the region in the first quadrant enclosed by the x axis the line $y=x$ and the circle $x^{2}+y^{2}=32$ [OR] Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cutoff by the line $\frac{a}{\sqrt{2}}$	4
13	Find the distance between the point $P(6,5,9)$ and the plane determined by the points $A(3,-1,2), B(5,2,4)$ and $C(-1,-1,6)$	4
	CASE BASED QUESTION	
14	A doctor is to visit a patient. From the past experience it is known that the probabilities he will come by rain, bus, scooter or by other means of transport are respectively $\frac{3}{10}, \frac{1}{5}, \frac{1}{10}$, and $\frac{2}{5}$. The probabilities he will be late are $\frac{1}{4}, \frac{1}{3}$ and $\frac{1}{12}$, if he comes by train, bus and scooter respectively, but if he comes by other means of transport, then he will not be late. When he arrives, he is late . Based on the above situation answer the following	
	What is the probability he comes by train	2
	What is the probability he comes by scooter	2

